On the density or measure of sets and their sumsets in the integers or the circle

被引:7
作者
Bienvenu, Pierre-Yves [1 ]
Hennecart, Francois [2 ]
机构
[1] Univ Lyon, CNRS, ICJ UMR 5208, F-69622 Villeurbanne, France
[2] Univ Lyon, UJM St Etienne, CNRS, ICJ UMR 5208, F-42023 St Etienne, France
关键词
Sumsets; Asymptotic density; Haar measure; Sequences;
D O I
10.1016/j.jnt.2019.11.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d(A) be the asymptotic density (if it exists) of a sequence of integers A. For any real numbers 0 <= alpha <= beta <= 1, we solve the question of the existence of a sequence A of positive integers such that d(A) =alpha and d(A + A) = beta. More generally we study the set of k-tuples (d(iA))(1 <= i <= k) for A subset of N. This leads us to introduce subsets defined by diophantine constraints inside a random set of integers known as the set of "pseudo sth powers". We consider similar problems for subsets of the circle R/Z, that is, we partially determine the set of k-tuples (mu(iA))(1 <= i <= k )for A subset of R/Z. ( )(C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:285 / 310
页数:26
相关论文
共 16 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], 1939, REC MATH
[3]  
[Anonymous], [No title captured]
[4]  
[Anonymous], 1983, SEQUENCES
[5]  
[Anonymous], [No title captured]
[6]   Sums of Cantor sets [J].
Cabrelli, CA ;
Hare, KE ;
Molter, UM .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :1299-1313
[7]  
ERDos P., 1960, Acta Arith., V6, P83, DOI DOI 10.4064/AA-6-1-83-110
[8]  
Erds P., 1948, Nederl. Akad. Wetensch. Proc, V51, P1146
[9]  
GOGUEL JH, 1975, J REINE ANGEW MATH, V278, P63
[10]  
Gyarmati K, 2007, CRM PROC & LECT NOTE, V43, P271