Periodic solutions of symmetric Kepler perturbations and applications

被引:11
作者
Alberti, Angelo [1 ]
Vidal, Claudio [2 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, Cidade Univ Prof Jose Aloisio Campos, Sao Cristovoao, SE, Brazil
[2] Univ Bio Bio, Fac Ciencias, GISDA, Dept Matemat, Casilla 5-C, Concepcion, Viii Region, Chile
关键词
Perturbation theory; Symmetries; Continuation method; Delaunay-Poincare variables; Circular Solutions; DYNAMICS; SYSTEMS; ORBITS; MODEL;
D O I
10.1080/14029251.2016.1204721
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of several families of symmetric periodic solutions as continuation of circular orbits of the Kepler problem for certain symmetric differentiable perturbations using an appropriate set of Poincare-Delaunay coordinates which are essential in our approach. More precisely, we try separately two situations in an independent way, namely, when the unperturbed part corresponds to a Kepler problem in inertial cartesian coordinates and when it corresponds to a Kepler problem in rotating coordinates on R-3. Moreover, the characteristic multipliers of the symmetric periodic solutions are characterized. The planar case arises as a particular case. Finally, we apply these results to study the existence and stability of periodic orbits of the Matese-Whitman Hamiltonian and the generalized Stormer model.
引用
收藏
页码:439 / 465
页数:27
相关论文
共 23 条
  • [1] New families of symmetric periodic solutions of the spatial anisotropic Manev problem
    Alberti, Angelo
    Vidal, Claudio
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
  • [2] Arenstorf R., 1993, J DIFF EQS, V4, P202
  • [3] Boccaletti D., 2004, THEORY ORBITS, V1
  • [4] Periodic solutions of symmetric perturbations of the Kepler problem
    Cabral, H
    Vidal, C
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 163 (01) : 76 - 88
  • [5] Analytic continuation in the case of non-regular dependency on a small parameter with an application to celestial mechanics
    Cors, JM
    Pinyol, C
    Soler, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (01) : 1 - 19
  • [6] Duistermaat J., 1970, ARCH RATION MECH AN, V45, P143
  • [7] DUISTERMAAT JJ, 1970, ARCH RATION MECH AN, V38, P59
  • [8] Elipe A, 2003, J ASTRONAUT SCI, V51, P391
  • [9] Periodic orbits of Hamiltonian systems: Applications to perturbed Kepler problems
    Guirao, Juan L. G.
    Llibre, Jaume
    Vera, Juan A.
    [J]. CHAOS SOLITONS & FRACTALS, 2013, 57 : 105 - 111
  • [10] Doubly-symmetric periodic solutions of the spatial restricted three-body problem
    Howison, RC
    Meyer, KR
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 163 (01) : 174 - 197