Non-Reductive Conjugation on the Nilpotent Cone

被引:1
作者
Boos, Magdalena [1 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Math C, D-42097 Wuppertal, Germany
关键词
Parabolic orbits in the nilpotent cone; Semiinvariants; Generic normal form; (Semi-)invariant ring; QUIVERS;
D O I
10.1007/s10468-014-9465-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the conjugation-action of an arbitrary upper-block parabolic subgroup of GL (n) (C), especially of the Borel subgroup B and of the standard unipotent subgroup U of the latter on the nilpotent cone of complex nilpotent matrices. We obtain generic normal forms of the orbits and describe generating (semi-) invariants for the Borel semi-invariant ring as well as for the U-invariant ring. The latter is described in more detail in terms of algebraic quotients by a special toric variety closely related. The study of a GIT-quotient for the Borel-action is initiated.
引用
收藏
页码:1683 / 1706
页数:24
相关论文
共 13 条
[1]  
[Anonymous], 1993, WH ROEVER LECT GEOME
[2]   MINIMAL SINGULARITIES FOR REPRESENTATIONS OF DYNKIN QUIVERS [J].
BONGARTZ, K .
COMMENTARII MATHEMATICI HELVETICI, 1994, 69 (04) :575-611
[3]  
Boos M., 2012, THESIS BERGISCHE U W
[4]  
Boos M., 2011, PROGR MATH, P147
[5]  
Cox D., 2011, Toric Varieties. Graduate Studies in Mathematics
[6]  
Halbach B., 2009, THESIS BERGISCHE U W
[7]  
Hilbert David, 1890, MATH ANN, V36, P473
[8]  
Kraft H., 1984, GEOMETRISCHE METHO D, VD1
[9]  
NAGATA M, 1960, P INT C MATH 1958, P459
[10]  
Reineke M., 2008, EMS SER C REP, P589, DOI DOI 10.4171/062-1/14