An FPGA Implementation of Convolutional Spiking Neural Networks for Radioisotope Identification

被引:5
作者
Huang, Xiaoyu [1 ]
Jones, Edward [2 ]
Zhang, Siru [3 ]
Xie, Shouyu [1 ]
Furber, Steve [2 ]
Goulermas, Yannis [3 ]
Marsden, Edward [4 ]
Baistow, Ian [4 ]
Mitra, Srinjoy [1 ]
Hamilton, Alister [1 ]
机构
[1] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[2] Univ Manchester, Manchester, Lancs, England
[3] Univ Liverpool, Liverpool, Merseyside, England
[4] Kromek Grp Plc, Durham, England
来源
2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | 2021年
关键词
event-based signal processing; low power; radioisotope identification; convolutional spiking neural networks; FPGA; SpiNNaker;
D O I
10.1109/ISCAS51556.2021.9401412
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper details FPGA implementation methodology for Convolutional Spiking Neural Networks (CSNN) and applies this methodology to low-power radioisotope identification using high resolution data. A power consumption of 75 mW has been achieved on an FPGA implementation of a CSNN, with the inference accuracy of 90.62% on a synthetic dataset. The chip validation method is presented. Prototyping was accelerated by evaluating SNN parameters using SpiNNaker neuromorphic platform.
引用
收藏
页数:5
相关论文
共 11 条
  • [1] Expectation-propagation for weak radionuclide identification at radiation portal monitors
    Altmann, Yoann
    Di Fulvio, Angela
    Paff, Marc G.
    Clarke, Shaun D.
    Davies, Mike E.
    McLaughlin, Stephen
    Hero, Alfred O.
    Pozzi, Sara A.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [2] [Anonymous], 2015, TENSORFLOW LARGE SCA
  • [3] Non-negative Matrix Factorization of Gamma-Ray Spectra for Background Modeling, Detection, and Source Identification
    Bilton, K. J.
    Joshi, T. H.
    Bandstra, M. S.
    Curtis, J. C.
    Quiter, B. J.
    Cooper, R. J.
    Vetter, K.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (05) : 827 - 837
  • [4] Furber S., 2020, SpinnakerA Spiking Neural Network Architecture, DOI [DOI 10.1561/9781680836523, 10.1561/9781680836523]
  • [5] Huang X., 2020, IEEE EBCCSP
  • [6] Huang X., 2020, IEEE I C ELECT CIRC
  • [7] An FPGA Implementation of Deep Spiking Neural Networks for Low-Power and Fast Classification
    Ju, Xiping
    Fang, Biao
    Yan, Rui
    Xu, Xiaoliang
    Tang, Huajin
    [J]. NEURAL COMPUTATION, 2020, 32 (01) : 182 - 204
  • [8] Automated Isotope Identification Algorithm Using Artificial Neural Networks
    Kamuda, M.
    Stinnett, J.
    Sullivan, C. J.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2017, 64 (07) : 1858 - 1864
  • [9] SILICON AUDITORY PROCESSORS AS COMPUTER PERIPHERALS
    LAZZARO, J
    WAWRZYNEK, J
    MAHOWALD, M
    SIVILOTTI, M
    GILLESPIE, D
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (03): : 523 - 528
  • [10] Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification
    Rueckauer, Bodo
    Lungu, Iulia-Alexandra
    Hu, Yuhuang
    Pfeiffer, Michael
    Liu, Shih-Chii
    [J]. FRONTIERS IN NEUROSCIENCE, 2017, 11