A free boundary problem related to thermal insulation

被引:25
作者
Caffarelli, Luis A. [1 ]
Kriventsov, Dennis [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
Free boundary; free discontinuity; insulation; Robin; MINIMUM PROBLEM; REGULARITY; MONOTONICITY; EXISTENCE;
D O I
10.1080/03605302.2016.1199038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a free boundary problem arising from the theory of thermal insulation. The outstanding feature of this set optimization problem is that the boundary of the set being optimized is not a level surface of a harmonic function, but rather a hypersurface along which a harmonic function satisfies a Robin condition. We show that minimal sets exist, satisfy uniform density estimates, and, under some geometric conditions, have "locally flat" boundaries.
引用
收藏
页码:1149 / 1182
页数:34
相关论文
共 18 条
[1]  
Aguilera NE., 1987, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), V14, P355
[2]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P105
[3]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[4]  
[Anonymous], 1960, Arch. Math. (Basel)
[5]  
Bonnet A, 1996, PROG NONLIN, V25, P93
[6]  
Bucur D., SYMMETRY BREAKING PR
[7]  
Bucur D., ANN I H POI IN PRESS
[8]   Monotonicity Formula and Regularity for General Free Discontinuity Problems [J].
Bucur, Dorin ;
Luckhaus, Stephan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 211 (02) :489-511
[9]   Monotonicity and separation for the Mumford-Shah problem [J].
David, G ;
Léger, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (05) :631-682
[10]  
David G, 1993, Mathematical Surveys and Monographs, V38