Relating the total domination number and the annihilation number of cactus graphs and block graphs

被引:7
作者
Bujtas, Csilla [1 ]
Jakovac, Marko [2 ,3 ]
机构
[1] Univ Pannonia, Fac Informat Technol, Egyet U 10, H-8200 Veszprem, Hungary
[2] Univ Maribor, Fac Nat Sci & Math, Koroska Cesta 160, Maribor 2000, Slovenia
[3] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
关键词
Total domination number; annihilation number; cactus graph; block graph; 2-DOMINATION NUMBER; SMALL TRANSVERSALS;
D O I
10.26493/1855-3974.1378.11d
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The total domination number gamma(t)(G) of a graph G is the order of a smallest set D subset of V (G) such that each vertex of G is adjacent to some vertex in D. The annihilation number a(G) of G is the largest integer k such that there exist k different vertices in G with degree sum of at most vertical bar E(G)vertical bar. It is conjectured that gamma(t)(G) <= a(G) + 1 holds for every nontrivial connected graph G. The conjecture was proved for graphs with minimum degree at least 3, and remains unresolved for graphs with minimum degree 1 or 2. In this paper we establish the conjecture for cactus graphs and block graphs.
引用
收藏
页码:183 / 202
页数:20
相关论文
共 14 条
  • [1] [Anonymous], 2004, THESIS U HOUSTON
  • [2] Some remarks on domination
    Archdeacon, D
    Ellis-Monaghan, J
    Fisher, D
    Froncek, D
    Lam, PCB
    Seager, S
    Wei, B
    Yuster, R
    [J]. JOURNAL OF GRAPH THEORY, 2004, 46 (03) : 207 - 210
  • [3] Memory efficient algorithms for cactus graphs and block graphs
    Brimkov, Boris
    Hicks, Illya V.
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 216 : 393 - 407
  • [4] SMALL TRANSVERSALS IN HYPERGRAPHS
    CHVATAL, V
    MCDIARMID, C
    [J]. COMBINATORICA, 1992, 12 (01) : 19 - 26
  • [5] DeLaVina E., WRITTEN WALL 2
  • [6] Relating the annihilation number and the 2-domination number of a tree
    Desormeaux, Wyatt J.
    Henning, Michael A.
    Rall, Douglas F.
    Yeo, Anders
    [J]. DISCRETE MATHEMATICS, 2014, 319 : 15 - 23
  • [7] Relating the annihilation number and the total domination number of a tree
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (03) : 349 - 354
  • [8] INDEPENDENCE AND THE HAVEL-HAKIMI RESIDUE
    GRIGGS, JR
    KLEITMAN, DJ
    [J]. DISCRETE MATHEMATICS, 1994, 127 (1-3) : 209 - 212
  • [9] Henning M.A., 2013, Springer Monographs in Mathematics, pxiv + 178
  • [10] A survey of selected recent results on total domination in graphs
    Henning, Michael A.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (01) : 32 - 63