FLIPS IN GRAPHS

被引:1
作者
Bohman, Tom [1 ]
Dudek, Andrzej [1 ]
Frieze, Alan [1 ]
Pikhurko, Oleg [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
quantum error-correcting codes; random graphs;
D O I
10.1137/090752237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a problem motivated by a question related to quantum error-correcting codes. Combinatorially, it involves the graph parameter f(G) = min{vertical bar A vertical bar + vertical bar{x is an element of V \ A : d(A)(x) is odd}vertical bar : A not equal empty set}, where V is the vertex set of G and d(A)(x) is the number of neighbors of x in A. We give asymptotically tight estimates of f for the random graph G(n,p) when p is constant. Also, if f(n) = max{f(G) : vertical bar V (G)vertical bar = n}, then we show that f(n) <= (0.382 + o(1))n.
引用
收藏
页码:1046 / 1055
页数:10
相关论文
共 6 条
  • [1] Alon N, 2008, PROBABILISTIC METHOD
  • [2] HEIN M, 2006, P INT SCH PHYS E FER
  • [3] Quantum-error-correcting codes using qudit graph states
    Looi, Shiang Yong
    Yu, Li
    Gheorghiu, Vlad
    Griffiths, Robert B.
    [J]. PHYSICAL REVIEW A, 2008, 78 (04):
  • [4] MARKUS M, BOUNDS MINIMUM DISTA
  • [5] van Lint J. H., 1999, Introduction to Coding Theory, V3rd
  • [6] YU S, 2007, ARXIV07091780V1