Large Solutions for Semilinear Parabolic Equations Involving Some Special Classes of Nonlinearities

被引:8
作者
Niculescu, Constantin P. [1 ]
Roventa, Ionel [1 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
NEUMANN BOUNDARY-CONDITIONS; BLOW-UP; HEAT-EQUATIONS;
D O I
10.1155/2010/491023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a new class of nonlinearities for which a nonlocal parabolic equation with Neumann boundary conditions has finite time blow-up solutions. Our approach is inspired by previous work done by Jazar and Kiwan (2008) and El Soufi et al. (2007).
引用
收藏
页数:11
相关论文
共 21 条
[1]  
[Anonymous], PURE APPL MATH
[2]  
Bebernes J., 1989, MATH PROBLEMS COMBUS
[3]  
Bingham N. H., 1989, Encyclopedia of Mathematics and its Applications
[4]   BLOW-UP OF SOLUTIONS OF NONLINEAR HEAT-EQUATIONS [J].
CAFFARRELLI, LA ;
FRIEDMAN, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 129 (02) :409-419
[5]   DIFFUSIVE LOGISTIC EQUATIONS WITH INDEFINITE WEIGHTS - POPULATION-MODELS IN DISRUPTED ENVIRONMENTS .2. [J].
CANTRELL, RS ;
COSNER, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (04) :1043-1064
[6]   Blow-up for a system of heat equations with nonlocal sources and absorptions [J].
Chen, YP .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (3-4) :361-372
[7]  
Cîrstea FC, 2006, ASYMPTOTIC ANAL, V46, P275
[8]  
Dumont S, 2007, ADV NONLINEAR STUD, V7, P271
[9]   A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions [J].
El Soufi, A. ;
Jazar, M. ;
Monneau, R. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (01) :17-39
[10]   LOCAL VS NON-LOCAL INTERACTIONS IN POPULATION-DYNAMICS [J].
FURTER, J ;
GRINFELD, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (01) :65-80