Noncompact shrinking four solitons with nonnegative curvature

被引:152
作者
Naber, Aaron [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2010年 / 645卷
关键词
RICCI FLOW;
D O I
10.1515/CRELLE.2010.062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if (M, g, X) is a noncompact four dimensional shrinking soliton with bounded nonnegative curvature operator, then (M, g) is isometric to R-4 or a finite quotient of S-2 x R-2 or S-3 x R. In the process we also show that a complete shrinking soliton (M, g, X) with bounded curvature is gradient and kappa-noncollapsed and the dilation of a Type I singularity is a shrinking soliton. Further in dimension three we show shrinking solitons with bounded curvature can be classified under only the assumption of Rc >= 0. The proofs rely on the technical construction of a singular reduced length function, a function which behaves as the reduced length function but can be extended to singular times.
引用
收藏
页码:125 / 153
页数:29
相关论文
共 17 条
[1]  
[Anonymous], 2003, RICCI FLOW SURGERY 3
[2]  
Bakry Dominique, 1985, SEMINAIRE PROBABILIT, P5, DOI 10.1007/BFb0075847
[3]  
Cao HD, 2006, ASIAN J MATH, V10, P165
[4]   Geometry of Ricci solitons [J].
Cao, Huai-Dong .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) :121-142
[5]  
Chen BL, 2006, J DIFFER GEOM, V74, P119
[6]  
Chow B., 2004, Math. Surv. Monogr, V110, pAMS
[7]  
ENDERS J, 2007, ARXIVMATH07110558
[8]  
HAMILTON R. S., 1997, Comm. Anal. Geom., V5, P1, DOI 10.4310/CAG.1997.v5.n1.a1
[9]   Some geometric properties of the Bakry-Emery-Ricci tensor [J].
Lott, J .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :865-883
[10]  
Morgan John., 2007, Ricci flow and the Poincare conjecture, V3