Stability and Bifurcation of Delayed Fractional-Order Dual Congestion Control Algorithms

被引:39
作者
Xiao, Min [1 ]
Zheng, Wei Xing [2 ]
Jiang, Guoping [1 ]
Cao, Jinde [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210003, Peoples R China
[2] Western Sydney Univ, Sch Comp Engn & Math, Sydney, NSW 2751, Australia
[3] Southeast Univ, Res Ctr Complex Syst & Network Sci, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Congestion control; fractional-order dynamical systems; hopf bifurcation; stability; HOPF-BIFURCATION; NUMERICAL-SOLUTION; GLOBAL STABILITY; SYSTEMS; MODEL; NETWORKS; DYNAMICS; CHAOS;
D O I
10.1109/TAC.2017.2688583
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this technical note, fractional-order congestion control systems are introduced for the first time. In comparison with the conventional integer-order dual congestion control algorithms, the fractional control algorithms are more accurate and versatile. Bifurcation theory in fractional-order differential equations is still an outstanding problem. Sufficient conditions for the occurrence of Hopf bifurcations are extended from integer-order dynamical systems to fractional-order cases. Then, these conditions are used to establish the existence of Hopf bifurcations for the delayed fractional-order model of dual congestion control algorithms proposed in this note. Finally, the onsets of bifurcations are identified, where Hopf bifurcations occur and a family of oscillations bifurcate from the equilibrium. Illustrative examples are also provided to demonstrate the theoretical results.
引用
收藏
页码:4819 / 4826
页数:8
相关论文
共 44 条
[1]   Hopf bifurcation and chaos in fractional-order modified hybrid optical system [J].
Abdelouahab, Mohammed-Salah ;
Hamri, Nasr-Eddine ;
Wang, Junwei .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :275-284
[2]  
Achar N., 2003, INITIALIZATION CAPUT
[3]   A Way to Exploit the Fractional Stability Domain for Robust Chaos Suppression and Synchronization via LMIs [J].
Aguiar, Braulio ;
Gonzalez, Temoatzin ;
Bernal, Miguel .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (10) :2796-2807
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]   Synthesis of fractional Laguerre basis for system approximation [J].
Aoun, M. ;
Malti, R. ;
Levron, F. ;
Oustaloup, A. .
AUTOMATICA, 2007, 43 (09) :1640-1648
[6]   Dynamic Incentives for Congestion Control [J].
Barrera, Jorge ;
Garcia, Alfredo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (02) :299-310
[7]   Numerical solution of composite left and right fractional Caputo derivative models for granular heat flow [J].
Blaszczyk, Tomasz ;
Leszczynski, Jacek ;
Szymanek, Ewa .
MECHANICS RESEARCH COMMUNICATIONS, 2013, 48 :42-45
[8]   An RLC interconnect model based on Fourier analysis [J].
Chen, GQ ;
Friedman, EG .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2005, 24 (02) :170-183
[9]   A Mathematical Model of the Skype VoIP Congestion Control Algorithm [J].
De Cicco, Luca ;
Mascolo, Saverio .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (03) :790-795
[10]   Global stability of congestion controllers for the Internet [J].
Deb, S ;
Srikant, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (06) :1055-1060