Geometric BVPs, Hardy spaces, and the Cauchy integral and transform on regions with corners

被引:2
作者
Loya, Paul [1 ]
机构
[1] SUNY Binghamton, Dept Math, Binghamton, NY 13902 USA
关键词
boundary value problems; Calderon projector; Cauchy integral; Cauchy transform; Dirac-type operators; Fredholm theory; manifolds with corners;
D O I
10.1016/j.jde.2007.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a new perspective on the Cauchy integral and transform and Hardy spaces for Dirac-type operators on manifolds with corners of codimension two. Instead of considering Banach or Hilbert spaces, we use polyhomogeneous functions on a geometrically "blown-up" version of the manifold called the total boundary blow-up introduced by Mazzeo and Melrose [R.R. Mazzeo, R.B. Melrose, Analytic surgery and the eta invariant, Geom. Funct. Anal. 5 (1) (1995) 14-75]. These polyhomogeneous functions are smooth everywhere on the original manifold except at the corners where they have a "Taylor series" (with possible log terms) in polar coordinates. The main application of our analysis is a complete Fredholm theory for boundary value problems of Dirac operators on manifolds with corners of codimension two. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:132 / 195
页数:64
相关论文
共 119 条
[1]  
Abreu Blaya R., 2003, ADV APPL CLIFFORD AL, V13, P133
[2]  
AMMANN B, 2006, PREPRINT
[3]  
AMMANN B, 2006, WEIGHTED SOBOLEV SPA
[4]  
[Anonymous], NACHR AKAD WISS GOTT
[5]  
[Anonymous], 1990, ANAL LINEAR PARTIAL
[6]  
[Anonymous], 1996, ROLE DIVISION JORDAN
[7]  
[Anonymous], REV MATEMATICA IBERO
[8]  
Aronszajn N., 1957, J. Math. Pures Appl, V9, P235
[9]   INDEX OF ELLIPTIC OPERATORS ON COMPACT MANIFOLDS [J].
ATIYAH, MF ;
SINGER, IM .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1963, 69 (03) :422-&
[10]  
BABUSKA I, 2006, BOUNDARY VALUE PROBL