On-line multiplication in real and complex base

被引:6
作者
Frougny, C [1 ]
Surarerks, A [1 ]
机构
[1] LIAFA, CNRS UMR 7089, F-75251 Paris 05, France
来源
16TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS | 2003年
关键词
D O I
10.1109/ARITH.2003.1207681
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Multiplication of two numbers represented in base beta is shown to be computable by an on-line algorithm when beta is a negative integer, a,positive non-integer real number, or a complex number of the form iroottau, where tau is a positive integer.
引用
收藏
页码:212 / 219
页数:8
相关论文
共 25 条
[1]  
Avizienis A, 1961, IRE Trans Electron Comput EC, VEC-10, P389, DOI DOI 10.1109/TEC.1961.5219227
[2]   SOME OPERATORS FOR ONLINE RADIX-2 COMPUTATIONS [J].
BAJARD, JC ;
DUPRAT, J ;
KLA, S ;
MULLER, JM .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1994, 22 (02) :336-345
[3]   Beta-integers as natural counting systems for quasicrystals [J].
Burdik, C ;
Frougny, C ;
Gazeau, JP ;
Krejcar, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (30) :6449-6472
[4]  
Chow C. Y., 1978, Proceedings of the 4th Symposium on Computer Arithmetic, P109
[5]  
ERCEGOVAC MD, 1978, P 4 S COMP ARR
[6]  
ERCEGOVAC MD, 1984, SPIE, V495, P86
[7]   On-line digit set conversion in real base [J].
Frougny, C .
THEORETICAL COMPUTER SCIENCE, 2003, 292 (01) :221-235
[8]   On-line finite automata for addition in some numeration systems [J].
Frougny, C .
RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1999, 33 (01) :79-101
[9]   RADIX REPRESENTATIONS OF QUADRATIC FIELDS [J].
GILBERT, WJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 83 (01) :264-274
[10]  
KATAI I, 1975, ACTA SCI MATH, V37, P255