On the operation configuration of SiGeHBTs based on power gain analysis

被引:44
作者
Ma, ZQ [1 ]
Jiang, NY [1 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
common-base (CB); common-emitter (CE); doping profile; maximum available power gain (MAG); maximum stable power gain (MSG); power gain; SiGe heterojunction bipolar transistors (HBTs); two-dimensional (2-D) simulation;
D O I
10.1109/TED.2004.842541
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The power gain difference, under different device stability conditions, between common-emitter (CE) and common-base (CB) bipolar junction transistors (BJT) is analyzed comprehensively. The analysis reveal that the CB configuration offers higher maximum available power gain than the CE configuration in the device's high operation frequency range, while the inverse relation holds in the very low frequency range. In the intermediate frequency range, the base resistance value, mainly affected by the base doping concentration, determines which configuration offers higher maximum stable power gain (MSG). These analyses have explicit implications on the operation configurations of SiGe heterojunction bipolar transistors (HBTs). Employing a typical doping profile of Si bipolar junction transistors with a trapezoidal Ge profile in SiGe HBTs usually results in a larger base resistance than the emitter resistance. For these devices, the CE configuration exhibits higher MSG than the CB configuration Employing a higher base doping concentration than the emitter with a box-type Ge profile considerably reduces the base resistance and thus favors the CB configuration for power amplification in this frequency range. The analysis are quantitatively verified with simulation and measurement results from SiGe HBTs of representative Ge and base doping profiles.
引用
收藏
页码:248 / 255
页数:8
相关论文
共 26 条
[1]   GAAS-BASED HETEROJUNCTION BIPOLAR-TRANSISTORS FOR VERY HIGH-PERFORMANCE ELECTRONIC-CIRCUITS [J].
ASBECK, PM ;
CHANG, FMC ;
WANG, KC ;
SULLIVAN, GJ ;
CHEUNG, DT .
PROCEEDINGS OF THE IEEE, 1993, 81 (12) :1709-1726
[2]   A fully integrated 5.3-GHz 2.4-v 0.3-W SiGe bipolar power amplifier with 50-Ω output [J].
Bakalski, W ;
Simbürger, W ;
Thüringer, R ;
Vasylyev, A ;
Scholtz, AL .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (07) :1006-1014
[3]   SiGe power HBT's for low-voltage, high-performance RF applications [J].
Burghartz, JN ;
Plouchart, JO ;
Jenkins, KA ;
Webster, CS ;
Soyuer, M .
IEEE ELECTRON DEVICE LETTERS, 1998, 19 (04) :103-105
[4]   SiGe HBT technology: A new contender for Si-based RF and microwave circuit applications [J].
Cressler, JD .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1998, 46 (05) :572-589
[5]   CLASS-A SIGE HBT POWER-AMPLIFIERS AT C-BAND FREQUENCIES [J].
ERBEN, U ;
WAHL, M ;
SCHUPPEN, A ;
SCHUMACHER, H .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1995, 5 (12) :435-436
[6]   Design of RF integrated circuits using SiGe bipolar technology [J].
Gotzfried, R ;
Beisswanger, F ;
Gerlach, S .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1998, 33 (09) :1417-1422
[7]   RFIC's for mobile communication systems using SiGe bipolar technology [J].
Gotzfried, R ;
Beisswanger, F ;
Gerlach, S ;
Schuppen, A ;
Dietrich, H ;
Seiler, U ;
Bach, KH ;
Albers, J .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1998, 46 (05) :661-668
[8]  
GRAY PR, 2000, ANAL DESIGN ANALOG I, P183
[9]   Large-signal performance of high-BVCEO graded epi-base SiGe HBTs at wireless frequencies [J].
Greenberg, DR ;
Rivier, M ;
Girard, P ;
Bergeault, E ;
Moniz, J ;
Ahlgren, D ;
Freeman, G ;
Subbanna, S ;
Jeng, SJ ;
Stein, K ;
Nguyen-Ngoc, D ;
Schonenberg, K ;
Malinowski, J ;
Colavito, D ;
Harame, DL ;
Meyerson, B .
INTERNATIONAL ELECTRON DEVICES MEETING - 1997, TECHNICAL DIGEST, 1997, :799-802
[10]   Current status and future trends of SiGeBiCMOS technology [J].
Harame, DL ;
Ahlgren, DC ;
Coolbaugh, DD ;
Dunn, JS ;
Freeman, GG ;
Gillis, JD ;
Groves, RA ;
Hendersen, GN ;
Johnson, RA ;
Joseph, AJ ;
Subbanna, S ;
Victor, AM ;
Watson, KM ;
Webster, CS ;
Zampardi, PJ .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (11) :2575-2594