A formulation of Noether's theorem for fractional problems of the calculus of variations

被引:251
作者
Frederico, Gastao S. F. [1 ]
Torres, Delfim F. M. [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
关键词
calculus of variations; fractional derivatives; Noether's theorem;
D O I
10.1016/j.jmaa.2007.01.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional (or non-integer) differentiation is an important concept both from theoretical and applicational points of view. The study of problems of the calculus of variations with fractional derivatives is a rather recent subject, the main result being the fractional necessary optimality condition of Euler-Lagrange obtained in 2002. Here we use the notion of Euler-Lagrange fractional extremal to prove a Noether-type theorem. For that we propose a generalization of the classical concept of conservation law, introducing an appropriate fractional operator. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:834 / 846
页数:13
相关论文
共 17 条
[1]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[2]   Special Issue: Fractional Derivatives and their Applications - Introduction [J].
Agrawal, OP ;
Machado, JAT ;
Sabatier, J .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :1-2
[3]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[4]  
[Anonymous], 2004, PORT MATH NS
[5]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[6]  
Gouveia PDF, 2005, COMPUT METHODS APPL, V5, P387
[7]  
HILFER R, 2000, APPL FRACTIONALS CAL
[8]  
Jost J., 1998, Calculus of Variations
[9]  
Kilbas A. A., 2006, THEORY APPL FRACTION, V204, DOI [10.1016/s0304-0208(06)80001-0, DOI 10.1016/S0304-0208(06)80001-0]
[10]   Stationarity-conservation laws for fractional differential equations with variable coefficients [J].
Klimek, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (31) :6675-6693