σ model on de Sitter space

被引:2
|
作者
Aichelburg, PC [1 ]
Lechner, C [1 ]
机构
[1] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
来源
PHYSICAL REVIEW D | 1998年 / 57卷 / 10期
关键词
D O I
10.1103/PhysRevD.57.6176
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss spherically symmetric, static solutions to the SU(2) sigma model on de Sitter background. Despite its simplicity this model reflects many of the features exhibited by systems of nonlinear matter coupled to gravity; e.g., there exists a countable set of regular solutions with finite energy: All of the solutions show linear instability with the number of unstable modes increasing with energy.
引用
收藏
页码:6176 / 6180
页数:5
相关论文
共 50 条
  • [1] The ,?(?)2 Model on de Sitter Space
    Barata, Joao C. A.
    Jakel, Christian D.
    Mund, Jens
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 281 (1389) : I - +
  • [2] REMARKS ON SCHRODINGERS MODEL OF DE SITTER SPACE
    RINDLER, W
    PHYSICAL REVIEW LETTERS, 1960, 5 (05) : 231 - 231
  • [3] Nonlinear sigma model in de Sitter space
    Kitamoto, Hiroyuki
    Kitazawa, Yoshihisa
    PHYSICAL REVIEW D, 2011, 83 (10)
  • [4] De Sitter space
    Spradlin, N
    Strominger, A
    Volovich, A
    UNITY FROM DUALITY: GRAVITY, GAUGE THEORY AND STRINGS, 2002, 76 : 423 - 453
  • [5] Entanglement entropy in the σ-model with the de Sitter target space
    Vancea, Ion V.
    NUCLEAR PHYSICS B, 2017, 924 : 453 - 476
  • [6] Nonequilibrium Dynamics of the σ-Model Modes on the de Sitter Space
    Vancea, Ion V.
    ADVANCES IN HIGH ENERGY PHYSICS, 2017, 2017
  • [7] New coordinates for de Sitter space and de Sitter radiation
    Parikh, MK
    PHYSICS LETTERS B, 2002, 546 (3-4) : 189 - 195
  • [8] de Sitter Space as a Resonance
    Maltz, Jonathan
    Susskind, Leonard
    PHYSICAL REVIEW LETTERS, 2017, 118 (10)
  • [9] Loops in de Sitter space
    Cacciatori, Sergio L.
    Epstein, Henri
    Moschella, Ugo
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (07):
  • [10] Vacuum of de Sitter space
    Acta Physica Polonica, Series B: Particle Physics and Field Theory, Nuclear Physics Theory of Relativity, 1995, 26 (01):