Dendrite-Free Sodium Metal Anodes Enabled by a Sodium Benzenedithiolate-Rich Protection Layer

被引:160
作者
Zhu, Ming [1 ,3 ]
Wang, Guanyao [1 ]
Liu, Xing [1 ]
Guo, Bingkun [2 ]
Xu, Gang [1 ]
Huang, Zhongyi [1 ]
Wu, Minghong [1 ]
Liu, Hua-Kun [3 ]
Dou, Shi-Xue [3 ]
Wu, Chao [1 ,3 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[3] Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会; 中国博士后科学基金; 中国国家自然科学基金;
关键词
dendrite prevention; protection layer; rechargeable batteries; sodium benzenedithiolate; sodium metal; ELECTRODES;
D O I
10.1002/anie.201916716
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium metal is an ideal anode material for metal rechargeable batteries, owing to its high theoretical capacity (1166 mAh g(-1)), low cost, and earth-abundance. However, the dendritic growth upon Na plating, stemming from unstable solid electrolyte interphase (SEI) film, is a major and most notable problem. Here, a sodium benzenedithiolate (PhS2Na2)-rich protection layer is synthesized in situ on sodium by a facile method that effectively prevents dendrite growth in the carbonate electrolyte, leading to stabilized sodium metal electrodeposition for 400 cycles (800 h) of repeated plating/stripping at a current density of 1 mA cm(-2). The organic salt, PhS2Na2, is found to be a critical component in the protection layer. This finding opens up a new and promising avenue, based on organic sodium slats, to stabilize sodium metals with a protection layer.
引用
收藏
页码:6596 / 6600
页数:5
相关论文
共 34 条
[1]  
BOSCATO JF, 1981, POLYM BULL, V4, P357
[2]   3D Flexible Carbon Felt Host for Highly Stable Sodium Metal Anodes [J].
Chi, Shang-Sen ;
Qi, Xing-Guo ;
Hu, Yong-Sheng ;
Fan, Li-Zhen .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[3]   Designing solid-liquid interphases for sodium batteries [J].
Choudhury, Snehashis ;
Wei, Shuya ;
Ozhabes, Yalcin ;
Gunceler, Deniz ;
Zachman, Michael J. ;
Tu, Zhengyuan ;
Shin, Jung Hwan ;
Nath, Pooja ;
Agrawal, Akanksha ;
Kourkoutis, Lena F. ;
Arias, Tomas A. ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2017, 8
[4]   Recent advances in effective protection of sodium metal anode [J].
Fan, Linlin ;
Li, Xifei .
NANO ENERGY, 2018, 53 :630-642
[5]   PI-STAR[-PI SHAKEUP SATELLITES FOR THE ANALYSIS OF STRUCTURE AND BONDING IN AROMATIC POLYMERS BY X-RAY PHOTOELECTRON-SPECTROSCOPY [J].
GARDELLA, JA ;
FERGUSON, SA ;
CHIN, RL .
APPLIED SPECTROSCOPY, 1986, 40 (02) :224-232
[6]   Sodium-ion batteries: present and future [J].
Hwang, Jang-Yeon ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (12) :3529-3614
[7]   Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic-Organic Composite Protective Layer [J].
Kim, Yun-Jung ;
Lee, Hongkyung ;
Noh, Hyungjun ;
Lee, Jinhong ;
Kim, Seokwoo ;
Ryou, Myung-Hyun ;
Lee, Yong Min ;
Kim, Hee-Tak .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (07) :6000-6006
[8]   Sodium Metal Anodes: Emerging Solutions to Dendrite Growth [J].
Lee, Byeongyong ;
Paek, Eunsu ;
Mitlin, David ;
Lee, Seung Woo .
CHEMICAL REVIEWS, 2019, 119 (08) :5416-5460
[9]   Lithium Benzenedithiolate Catholytes for Rechargeable Lithium Batteries [J].
Li, Fengli ;
Si, Yubing ;
Liu, Bingjie ;
Li, Zhongjun ;
Fu, Yongzhu .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (32)
[10]   A high performance sulfur-doped disordered carbon anode for sodium ion batteries [J].
Li, Wei ;
Zhou, Min ;
Li, Haomiao ;
Wang, Kangli ;
Cheng, Shijie ;
Jiang, Kai .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2916-2921