Photoacoustic characterization of nanowire arrays formed by metal-assisted chemical etching of crystalline silicon substrates with different doping level

被引:17
作者
Lishchuk, Pavlo [1 ]
Isaiev, Mykola [1 ,2 ]
Osminkina, Liubov [3 ]
Burbelo, Roman [1 ]
Nychyporuk, Tetyana [4 ]
Timoshenko, Victor [3 ,5 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Fac Phys, 64-13 Volodymyrska Str, UA-01601 Kiev, Ukraine
[2] Univ Lorraine, CNRS UMR7563, LEMTA, F-54500 Vandoeuvre Les Nancy, France
[3] Lomonosov Moscow State Univ, Fac Phys, Leninskie Gory 1, Moscow 119991, Russia
[4] Univ Lyon, Inst Nanotechnol Lyon, UMR 5270, Site INSA Lyon Villeurbanne, F-69621 Villeurbanne, France
[5] Natl Reseach Nucl Univ MEPHI, Physbio Inst, Lab Nanotheranost, Kashirskoe Sh 31, Moscow 115409, Russia
基金
俄罗斯科学基金会;
关键词
Silicon nanowires; Photoacoustics; Thermal conductivity; Optical absorption; THERMAL-CONDUCTIVITY; POROUS SILICON; FEATURES;
D O I
10.1016/j.physe.2018.11.016
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silicon nanowire (SiNW) arrays were investigated by gas-microphone photoacoustic (PA) technique to evaluate the thermal conductivity and optical absorption. The arrays with SiNW's length from 3 to 25 mu m were formed by metal-assisted chemical etching of (100)-oriented monocrystalline silicon (c-Si) substrates with the low and high concentration of doping impurities. PA responses of SiNWs were excited by sources with wavelengths of 460 and 630 nm in the frequency range from 15 to 1150 Hz. An analysis of the experimental data reveals that the thermal conductivities of SiNWs formed on the lightly and heavily doped substrates are about 4-7 and 0.17-0.22 W/(mK), respectively. The latter value is explained by the porous structure of the SiNWs, promoting a strong restriction of the phonon free path. The thermal conductivity and optical absorption of SiNW arrays depend on the doping level and length of SiNWs due to a combination of the phonon and light scattering processes.
引用
收藏
页码:131 / 136
页数:6
相关论文
共 37 条
[1]   Size evaluation of the fine morphological features of porous nanostructures from the perturbation of heat transfer by a pore filling agent [J].
Andrusenko, D. ;
Isaiev, M. ;
Tytarenko, A. ;
Lysenko, V. ;
Burbelo, R. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2014, 194 :79-82
[2]   Thermal conduction in doped single-crystal silicon films [J].
Asheghi, M ;
Kurabayashi, K ;
Kasnavi, R ;
Goodson, KE .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (08) :5079-5088
[3]   Analysis of optical and thermal properties of thermally oxidized mesoporous silicon layers [J].
Ben Hlel, D. ;
Gaied, I. ;
Sghaier, N. ;
Gharbi, A. ;
Fitouri, H. ;
Yacoubi, N. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2015, 204 :137-142
[4]  
Berthing T., 2009, Journal of Nanoneuroscience, V1, P3, DOI [10.1166/jns.2009.001, DOI 10.1166/JNS.2009.001]
[5]   Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients [J].
Green, Martin A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (11) :1305-1310
[6]   Metal-assisted chemical etching of silicon and nanotechnology applications [J].
Han, Hee ;
Huang, Zhipeng ;
Lee, Woo .
NANO TODAY, 2014, 9 (03) :271-304
[7]   A review on electronic and optical properties of silicon nanowire and its different growth techniques [J].
Hasan, Mehedhi ;
Huq, Md Fazlul ;
Mahmood, Zahid Hasan .
SPRINGERPLUS, 2013, 2
[8]   Photothermal deflection investigation of thermally oxidized mesoporous silicon [J].
Hlel, D. Ben ;
Bouzidi, M. ;
Sghaier, N. ;
Fitouri, H. ;
Gharbi, A. ;
Jani, B. E. ;
Yacoubi, N. .
OPTIK, 2016, 127 (10) :4261-4266
[9]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5
[10]  
Huang Y., 2013, Silicon and Silicide Nanowires Applications, Fabrication, and Properties