Integrating Prosodic Features in Extractive Meeting Summarization

被引:18
作者
Xie, Shasha [1 ,2 ]
Hakkani-Tuer, Dilek [2 ]
Favre, Benoit [2 ]
Liu, Yang [1 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75083 USA
[2] Int Comp Sci Inst, Berkeley, CA USA
来源
2009 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION & UNDERSTANDING (ASRU 2009) | 2009年
关键词
D O I
10.1109/ASRU.2009.5373302
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Speech contains additional information than text that can be valuable for automatic speech summarization. In this paper, we evaluate how to effectively use acoustic/prosodic features for extractive meeting summarization, and how to integrate prosodic features with lexical and structural information for further improvement. To properly represent prosodic features, we propose different normalization methods based on speaker, topic, or local context information. Our experimental results show that using only the prosodic features we achieve better performance than using the non-prosodic information on both the human transcripts and recognition output. In addition, a decision-level combination of the prosodic and non-prosodic features yields further gain, outperforming the individual models.
引用
收藏
页码:387 / +
页数:2
相关论文
共 16 条
[1]  
Boersma P., 2006, PRAAT DOING PHONETIC
[2]  
BUIST AH, 2005, P CLIN
[3]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[4]  
Galley Michel, 2006, P EMNLP
[5]  
Janin A., 2003, P ICASSP
[6]  
Lin CY, 2004, TEXT SUMMARIZATION B, DOI DOI 10.1179/CIM.2004.5
[7]  
Maskey S.R., 2006, P HLT NAACL
[8]  
Maskey Sameer., 2005, P INT
[9]  
MURRAY G, 2005, P ACL WORKSH INTR EX
[10]  
Murray Gabriel., 2005, P INT