Rhodium-molybdenum oxide electrocatalyst with dual active sites for electrochemical ammonia synthesis under neutral pH condition

被引:16
作者
Chung, Sunki [1 ]
Seo, Dong Han [2 ]
Choi, Minjun [1 ]
Mao, Xin [3 ]
Du, Aijun [3 ]
Ham, Kahyun [1 ]
Giddey, Sarbjit [4 ]
Lee, Jaeyoung [1 ,5 ]
Ju, HyungKuk [4 ,6 ]
机构
[1] Gwangju Inst Sci & Technol GIST, Sch Earth Sci & Environm Engn, Electrochem React & Technol Lab, Gwangju 61005, South Korea
[2] Univ Technol Sydney, Sch Civil & Environm Engn, POB 123,15 Broadway, Sydney, NSW 2007, Australia
[3] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Gardens Point Campus Brisbane, Brisbane, Qld 4001, Australia
[4] CSIRO Energy, Private Bag 10, Clayton, Vic 3169, Australia
[5] GIST, Ertl Ctr Electrochem & Catalysis, Gwangju 61005, South Korea
[6] Korea Inst Energy Res KIER, Hydrogen Res Dept, 152 Gajeong Ro, Daejeon 34129, South Korea
关键词
Electrochemical ammonia synthesis; Nitrogen fixation; Green hydrogen carrier; Rhodium; Molybdenum oxide; TOTAL-ENERGY CALCULATIONS; EFFICIENT ELECTROCATALYST; N-2; REDUCTION; CONVERSION; DINITROGEN; CATALYSTS; METALS; NH3;
D O I
10.1016/j.jelechem.2021.115157
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Electrochemical nitrogen reduction reaction (NRR) process has attracted significant attention recently as an alternative route for green ammonia (NH3) production to replace conventional, energy intensive Haber-Bosh process. However, a major challenge in NRR process is the relatively poor selectivity of NRR process over its competing hydrogen evolution reaction (HER) process. Herein, we report the synthesis of molybdenum oxide decorated on the rhodium (Rh-MoOx/C) catalyst for an efficient NRR with high selectivity. Rh-MoOx/C cat-alyst exhibits an outstanding NH3 yield rate of 57.2 mu g h(-1) mg(cat)(-1) at -0.6 V vs. RHE and a high faradaic efficiency of 22% at -0.2 V vs. RHE in 0.1 M Na2SO4 electrolyte. This study reveals the interdependent relationship between the catalyst structure, operating conditions, and the reaction selectivity in the electrochemical NH3 synthesis. Moreover, this study also demonstrates the effectiveness of the bimetallic materials in enhancing the NRR process which is an important finding for designing a future electrocatalyst for electrochemical NH3 production.
引用
收藏
页数:9
相关论文
共 41 条
[1]   Determination of the states of oxidation of metals in thin oxide films by X-ray photoelectron spectroscopy [J].
Alov, NV .
JOURNAL OF ANALYTICAL CHEMISTRY, 2005, 60 (05) :431-435
[2]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[3]   Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions [J].
Cheng, Hui ;
Ding, Liang-Xin ;
Chen, Gao-Feng ;
Zhang, Lili ;
Xue, Jian ;
Wang, Haihui .
ADVANCED MATERIALS, 2018, 30 (46)
[4]   Greatly Enhanced Electrocatalytic N2Reduction over V2O3/C by P Doping [J].
Cheng, Xin ;
Wang, Jianwei ;
Xiong, Wei ;
Wang, Ting ;
Wu, Tongwei ;
Lu, Siyu ;
Chen, Guang ;
Gao, Shuyan ;
Shi, Xifeng ;
Jiang, Zhenju ;
Niu, Xiaobin ;
Sun, Xuping .
CHEMNANOMAT, 2020, 6 (09) :1315-1319
[5]   Catalysts for nitrogen reduction to ammonia [J].
Foster, Shelby L. ;
Bakovic, Sergio I. Perez ;
Duda, Royce D. ;
Maheshwari, Sharad ;
Milton, Ross D. ;
Minteer, Shelley D. ;
Janik, Michael J. ;
Renner, Julie N. ;
Greenlee, Lauren F. .
NATURE CATALYSIS, 2018, 1 (07) :490-500
[6]   Enabling electrochemical conversion of N2 to NH3 under ambient conditions by a CoP3 nanoneedle array [J].
Gao, Jiajia ;
Lv, Xu ;
Wang, Fengyi ;
Luo, Yongsong ;
Lu, Siyu ;
Chen, Guang ;
Gao, Shuyan ;
Zhong, Benhe ;
Guo, Xiaodong ;
Sun, Xuping .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (35) :17956-17959
[7]   Review of electrochemical ammonia production technologies and materials [J].
Giddey, S. ;
Badwal, S. P. S. ;
Kulkarni, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (34) :14576-14594
[8]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[9]   Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production [J].
Gwak, Jieun ;
Choun, Myounghoon ;
Lee, Jaeyoung .
CHEMSUSCHEM, 2016, 9 (04) :403-408
[10]   MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3 [J].
Han, Jingrui ;
Ji, Xuqiang ;
Ren, Xiang ;
Cui, Guanwei ;
Li, Lei ;
Xie, Fengyu ;
Wang, Hui ;
Li, Baihai ;
Sun, Xuping .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (27) :12974-12977