Approximation of entropy solutions to degenerate nonlinear parabolic equations

被引:16
作者
Abreu, Eduardo [1 ]
Colombeau, Mathilde [1 ,2 ]
Panov, Evgeny Yu [3 ,4 ]
机构
[1] Univ Estadual Campinas, Campinas, SP, Brazil
[2] Univ Sao Paulo, Sao Paulo, Brazil
[3] Novgorod State Univ, Veliky Novgorod, Russia
[4] St Petersburg State Univ, St Petersburg, Russia
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2017年 / 68卷 / 06期
基金
俄罗斯基础研究基金会; 巴西圣保罗研究基金会;
关键词
Partial differential equations; Degenerate parabolic equations; Entropy solutions; Approximate solutions; Stability; VANISHING VISCOSITY APPROACH; CONSERVATION-LAWS; HYPERBOLIC SYSTEMS; SHOCK WAVES;
D O I
10.1007/s00033-017-0877-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We approximate the unique entropy solutions to general multidimensional degenerate parabolic equations with BV continuous flux and continuous nondecreasing diffusion function (including scalar conservation laws with BV continuous flux) in the periodic case. The approximation procedure reduces, by means of specific formulas, a system of PDEs to a family of systems of the same number of ODEs in the Banach space , whose solutions constitute a weak asymptotic solution of the original system of PDEs. We establish well posedness, monotonicity and -stability. We prove that the sequence of approximate solutions is strongly -precompact and that it converges to an entropy solution of the original equation in the sense of Carrillo. This result contributes to justify the use of this original method for the Cauchy problem to standard multidimensional systems of fluid dynamics for which a uniqueness result is lacking.
引用
收藏
页数:17
相关论文
共 35 条
[1]  
Albeverio S., 2005, ANAL APPROACHES MULT, P45
[2]   Construction of global-in-time solutions to Kolmogorov-Feller pseudodifferential equations with a small parameter using characteristics [J].
Albeverio, Sergio ;
Danilov, Vladimir .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (04) :426-439
[3]  
Andreianov B, 2010, NODEA-NONLINEAR DIFF, V17, P109, DOI 10.1007/s00030-009-0042-9
[4]  
[Anonymous], 1974, ANAL PRILOZEN
[5]  
Bear J., 2011, THEORY APPL TRANSPOR, V23
[6]  
Bebernes J., 2013, Appl. Math. Sci., V83
[7]   Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression [J].
Berres, S ;
Bürger, R ;
Karlsen, KH ;
Tory, EM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :41-80
[8]   Entropy solutions for nonlinear degenerate problems [J].
Carrillo, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (04) :269-361
[9]   Spherically symmetric solutions of multidimensional zero-pressure gas dynamics system [J].
Choudhury, Anupam Pal ;
Joseph, K. T. ;
Sahoo, Manas R. .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2014, 11 (02) :269-293
[10]   Asymptotic study of the initial value problem to a standard one pressure model of multifluid flows in nondivergence form [J].
Colombeau, M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) :197-217