A Compact Fully Ferroelectric-FETs Reservoir Computing Network With Sub-100 ns Operating Speed

被引:25
作者
Tang, Mingfeng [1 ]
Zhan, Xuepeng [1 ]
Wu, Shuhao [1 ]
Bai, Maoying [1 ]
Feng, Yang [1 ]
Zhao, Guoqing [1 ]
Wu, Jixuan [1 ]
Chai, Junshuai [2 ]
Xu, Hao [2 ]
Wang, Xiaolei [2 ]
Chen, Jiezhi [1 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn ISE, Qingdao 266237, Peoples R China
[2] Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
FeFETs; Reservoirs; Training; Task analysis; Performance evaluation; Switches; Software packages; Ferroelectric FET; full-connection; HZO; reservoir computing;
D O I
10.1109/LED.2022.3188496
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reservoir computing (RC) is a low-cost and temporary-signal friendly computational framework, whose hardware implementation is hindered by integrating huge amounts and various kinds of devices. Benefitted from the logic in memory (LIM) capability, the process compatible Hf0.5Zr0.5O2 (HZO)-based ferroelectric field-effect-transistor (FeFET) is a promising candidate for implementing artificial networks. In this letter, a fully FeFETs RC network is proposed. Multiple functions can be achieved in a single device owing to its intrinsic characteristics, and the richness of virtual nodes is largely enhanced through full-connection structures. Impressively, only 44 FeFETs are required to construct a compact RC network with 100 ns operating speed and high accuracy in classification tasks. This paves the way to develop the high energy-efficiency FeFET RC networks.
引用
收藏
页码:1555 / 1558
页数:4
相关论文
共 19 条
[1]   Reservoir computing using dynamic memristors for temporal information processing [J].
Du, Chao ;
Cai, Fuxi ;
Zidan, Mohammed A. ;
Ma, Wen ;
Lee, Seung Hwan ;
Lu, Wei D. .
NATURE COMMUNICATIONS, 2017, 8
[2]   Design-Technology Co-Optimizations (DTCO) for General-Purpose Computing In-Memory Based on 55nm NOR Flash Technology [J].
Feng, Yang ;
Chen, Bing ;
Liu, Jing ;
Sun, Zhaohui ;
Hu, Hongyang ;
Zhang, Junyu ;
Zhan, Xuepeng ;
Chen, Jiezhi .
2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
[3]   Macromagnetic Simulation for Reservoir Computing Utilizing Spin Dynamics in Magnetic Tunnel Junctions [J].
Furuta, Taishi ;
Fujii, Keisuke ;
Nakajima, Kohei ;
Tsunegi, Sumito ;
Kubota, Hitoshi ;
Suzuki, Yoshishige ;
Miwa, Shinji .
PHYSICAL REVIEW APPLIED, 2018, 10 (03)
[4]   Nonvolatile Memory Materials for Neuromorphic Intelligent Machines [J].
Jeong, Doo Seok ;
Hwang, Cheol Seong .
ADVANCED MATERIALS, 2018, 30 (42)
[5]  
Krizhevsky Alex., 2009, Technical Report
[6]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[7]   Rotating neurons for all-analog implementation of cyclic reservoir computing [J].
Liang, Xiangpeng ;
Zhong, Yanan ;
Tang, Jianshi ;
Liu, Zhengwu ;
Yao, Peng ;
Sun, Keyang ;
Zhang, Qingtian ;
Gao, Bin ;
Heidari, Hadi ;
Qian, He ;
Wu, Huaqiang .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]   Temporal data classification and forecasting using a memristor-based reservoir computing system [J].
Moon, John ;
Ma, Wen ;
Shin, Jong Hoon ;
Cai, Fuxi ;
Du, Chao ;
Lee, Seung Hwan ;
Lu, Wei D. .
NATURE ELECTRONICS, 2019, 2 (10) :480-487
[9]   Proposal and Experimental Demonstration of Reservoir Computing using Hf0.5Zr0.5O2/Si FeFETs for Neuromorphic Applications [J].
Nako, E. ;
Toprasertpong, K. ;
Nakane, R. ;
Wang, Z. ;
Miyatake, Y. ;
Takenaka, M. ;
Takagi, S. .
2020 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, 2020,
[10]   Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach [J].
Pathak, Jaideep ;
Hunt, Brian ;
Girvan, Michelle ;
Lu, Zhixin ;
Ott, Edward .
PHYSICAL REVIEW LETTERS, 2018, 120 (02)