Vanishing sequences and Okounkov bodies

被引:24
作者
Boucksom, Sebastien [1 ]
Kueronya, Alex [2 ]
Maclean, Catriona [3 ]
Szemberg, Tomasz [4 ]
机构
[1] Univ Paris 06, CNRS, Inst Math, F-75251 Paris 05, France
[2] Budapest Univ Technol & Econ, Dept Algebra, Math Inst, H-1521 Budapest, Hungary
[3] Univ Grenoble, Inst Fourier, CNRS, UMR 5582, F-38402 St Martin Dheres, France
[4] Inst Matemat UP, PL-30084 Krakow, Poland
关键词
VOLUMES;
D O I
10.1007/s00208-014-1081-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study the vanishing sequence along a real valuation of sections of a line bundle on a normal projective variety. Building on previous work of the first author with Huayi Chen, we prove an equidistribution result for vanishing sequences of large powers of a big line bundle, and study the limit measure; in particular, the latter is described in terms of restricted volumes for divisorial valuations. We also show on an example that the associated concave function on the Okounkov body can be discontinuous at boundary points.
引用
收藏
页码:811 / 834
页数:24
相关论文
共 22 条
[1]   Okounkov Bodies of Finitely Generated Divisors [J].
Anderson, Dave ;
Kueronya, Alex ;
Lozovanu, Victor .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (09) :2343-2355
[2]  
[Anonymous], ARXIV12094104
[3]  
Boucksom S., 2012, SEMINAIRE BOURBAKI, V1059
[4]   Okounkov bodies of filtered linear series [J].
Boucksom, Sebastien ;
Chen, Huayi .
COMPOSITIO MATHEMATICA, 2011, 147 (04) :1205-1229
[5]   DIFFERENTIABILITY OF VOLUMES OF DIVISORS AND A PROBLEM OF TEISSIER [J].
Boucksom, Sebastien ;
Favre, Charles ;
Jonsson, Mattias .
JOURNAL OF ALGEBRAIC GEOMETRY, 2009, 18 (02) :279-308
[6]  
Cutkosky SD, 2000, J REINE ANGEW MATH, V522, P93
[7]   Multiplicities associated to graded families of ideals [J].
Cutkosky, Steven Dale .
ALGEBRA & NUMBER THEORY, 2013, 7 (09) :2059-2083
[8]  
Donaldson SK, 2002, J DIFFER GEOM, V62, P289
[9]   Uniform approximation of Abhyankar valuation ideals in smooth function fields [J].
Ein, L ;
Lazarsfeld, R ;
Smith, KE .
AMERICAN JOURNAL OF MATHEMATICS, 2003, 125 (02) :409-440
[10]   Asymptotic invariants of base loci [J].
Ein, Lawrence ;
Lazarsfeld, Robert ;
Mustata, Mircea ;
Nakamaye, Michael ;
Popa, Mihnea .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (06) :1701-1734