Providing Evidence for the Null Hypothesis in Functional Magnetic Resonance Imaging Using Group-Level Bayesian Inference

被引:7
作者
Masharipov, Ruslan [1 ]
Knyazeva, Irina [1 ]
Nikolaev, Yaroslav [1 ]
Korotkov, Alexander [1 ]
Didur, Michael [1 ]
Cherednichenko, Denis [1 ]
Kireev, Maxim [1 ]
机构
[1] Russian Acad Sci, NP Bechtereva Inst Human Brain, St Petersburg, Russia
基金
俄罗斯科学基金会; 美国国家卫生研究院;
关键词
null results; fMRI; Bayesian analyses; human brain; statistical parametric mapping; FALSE DISCOVERY RATE; P-VALUES; CONFIDENCE-INTERVALS; POWER CALCULATION; STATISTICAL-INFERENCE; SIGNIFICANCE TESTS; EQUIVALENCE TESTS; SAMPLE-SIZE; T TESTS; FMRI;
D O I
10.3389/fninf.2021.738342
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Classical null hypothesis significance testing is limited to the rejection of the point-null hypothesis; it does not allow the interpretation of non-significant results. This leads to a bias against the null hypothesis. Herein, we discuss statistical approaches to 'null effect' assessment focusing on the Bayesian parameter inference (BPI). Although Bayesian methods have been theoretically elaborated and implemented in common neuroimaging software packages, they are not widely used for 'null effect' assessment. BPI considers the posterior probability of finding the effect within or outside the region of practical equivalence to the null value. It can be used to find both 'activated/deactivated' and 'not activated' voxels or to indicate that the obtained data are not sufficient using a single decision rule. It also allows to evaluate the data as the sample size increases and decide to stop the experiment if the obtained data are sufficient to make a confident inference. To demonstrate the advantages of using BPI for fMRI data group analysis, we compare it with classical null hypothesis significance testing on empirical data. We also use simulated data to show how BPI performs under different effect sizes, noise levels, noise distributions and sample sizes. Finally, we consider the problem of defining the region of practical equivalence for BPI and discuss possible applications of BPI in fMRI studies. To facilitate 'null effect' assessment for fMRI practitioners, we provide Statistical Parametric Mapping 12 based toolbox for Bayesian inference.
引用
收藏
页数:31
相关论文
共 154 条
[1]   Assessing robustness against potential publication bias in Activation Likelihood Estimation (ALE) meta-analyses for fMRI [J].
Acar, Freya ;
Seurinck, Ruth ;
Eickhoff, Simon B. ;
Moerkerke, Beatrijs .
PLOS ONE, 2018, 13 (11)
[2]   Quantifying Support for the Null Hypothesis in Psychology: An Empirical Investigation [J].
Aczel, Balazs ;
Palfi, Bence ;
Szollosi, Aba ;
Kovacs, Marton ;
Szaszi, Barnabas ;
Szecsi, Peter ;
Zrubka, Mark ;
Gronau, Quentin F. ;
van den Bergh, Don ;
Wagenmakers, Eric-Jan .
ADVANCES IN METHODS AND PRACTICES IN PSYCHOLOGICAL SCIENCE, 2018, 1 (03) :357-366
[3]   Multiple testing correction over contrasts for brain imaging [J].
Alberton, Bianca A., V ;
Nichols, Thomas E. ;
Gamba, Humberto R. ;
Winkler, Anderson M. .
NEUROIMAGE, 2020, 216
[4]   STATISTICS NOTES - ABSENCE OF EVIDENCE IS NOT EVIDENCE OF ABSENCE [J].
ALTMAN, DG ;
BLAND, JM .
BRITISH MEDICAL JOURNAL, 1995, 311 (7003) :485-485
[5]   The earth is flat (p > 0.05): significance thresholds and the crisis of unreplicable research [J].
Amrhein, Valentin ;
Korner-Nievergelt, Franzi ;
Roth, Tobias .
PEERJ, 2017, 5
[6]  
[Anonymous], 1990, Statistical Science, DOI DOI 10.1214/SS/1177012262
[7]  
[Anonymous], 1965, Introduction to probability and statistics from a Bayesian viewpoint: Vol. 2: Inference, DOI 10.1017/CBO9780511662973
[8]   Standardized or simple effect size: What should be reported? [J].
Baguley, Thom .
BRITISH JOURNAL OF PSYCHOLOGY, 2009, 100 :603-617
[9]  
Balakrishnan N., 1994, CONTINUOUS UNIVARIAT, V6, P1
[10]   Function in the human connectome: Task-fMRI and individual differences in behavior [J].
Barch, Deanna M. ;
Burgess, Gregory C. ;
Harms, Michael P. ;
Petersen, Steven E. ;
Schlaggar, Bradley L. ;
Corbetta, Maurizio ;
Glasser, Matthew F. ;
Curtiss, Sandra ;
Dixit, Sachin ;
Feldt, Cindy ;
Nolan, Dan ;
Bryant, Edward ;
Hartley, Tucker ;
Footer, Owen ;
Bjork, James M. ;
Poldrack, Russ ;
Smith, Steve ;
Johansen-Berg, Heidi ;
Snyder, Abraham Z. ;
Van Essen, David C. .
NEUROIMAGE, 2013, 80 :169-189