Deformations of canonical pairs and Fano varieties

被引:20
作者
de Fernex, Tommaso [1 ]
Hacon, Christopher D. [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2011年 / 651卷
基金
美国国家科学基金会;
关键词
MINIMAL MODELS; DEGENERATIONS; EXISTENCE; RIGIDITY; CONE;
D O I
10.1515/CRELLE.2011.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of various aspects of deformations of log pairs, especially in connection to questions related to the invariance of singularities and log plurigenera. In particular, using recent results from the minimal model program, we obtain an extension theorem for adjoint divisors in the spirit of Siu and Kawamata and more recent works of Hacon and M(c)Kernan. Our main motivation however comes from the study of deformations of Fano varieties. Our first application regards the behavior of Mori chamber decompositions in families of Fano varieties: we prove that, in the case of mild singularities, such decomposition is rigid under deformation when the dimension is small. We then turn to analyze deformation properties of toric Fano varieties, and prove that every simplicial toric Fano variety with at most terminal singularities is rigid under deformations (and in particular is not smoothable, if singular).
引用
收藏
页码:97 / 126
页数:30
相关论文
共 43 条
[1]   Toric degenerations of spherical varieties [J].
Alexeev V. ;
Brion M. .
Selecta Mathematica, 2005, 10 (4) :453-478
[2]  
Ambro F, 1999, MATH RES LETT, V6, P573
[3]  
[Anonymous], 2013, Cambridge Tracts in Mathematics
[4]  
[Anonymous], 1998, Algebraic geometry: Hirzebruch, V70, P193
[5]  
[Anonymous], 1965, Inst. Hautes Etudes Sci. Publ. Math., P231, DOI 10.1007/BF02684322
[6]  
[Anonymous], 2000, Asian J. Math, DOI DOI 10.4310/AJM.2000.V4.N1.A11
[7]   Mirror symmetry and toric degenerations of partial flag manifolds [J].
Batyrev, VV ;
Ciocan-Fontanine, I ;
Kim, B ;
Van Straten, D .
ACTA MATHEMATICA, 2000, 184 (01) :1-39
[8]  
Batyrev VV., 2004, FAN C U TOR TUR, P109
[9]  
Bien F, 1996, COMPOS MATH, V104, P1
[10]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468