Artificial Intelligence in Drug Design

被引:193
作者
Hessler, Gerhard [1 ]
Baringhaus, Karl-Heinz [2 ]
机构
[1] R&D, Integrated Drug Discovery, Ind Pk Hoechst, D-65926 Frankfurt, Germany
[2] R&D, Ind Pk Hoechst, D-65926 Frankfurt, Germany
关键词
artificial intelligence; deep learning; neural networks; property prediction; quantitative structure-activity relationship (QSAR); quantitative structure-property prediction (QSPR); de novo design; MACHINE LEARNING-METHODS; DEEP NEURAL-NETWORKS; MOLECULAR DESCRIPTORS; PREDICTION; DISCOVERY; CHEMOINFORMATICS; ARCHITECTURES; FINGERPRINTS; CHEMISTRY; SYSTEM;
D O I
10.3390/molecules23102520
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Artificial Intelligence (AI) plays a pivotal role in drug discovery. In particular artificial neural networks such as deep neural networks or recurrent networks drive this area. Numerous applications in property or activity predictions like physicochemical and ADMET properties have recently appeared and underpin the strength of this technology in quantitative structure-property relationships (QSPR) or quantitative structure-activity relationships (QSAR). Artificial intelligence in de novo design drives the generation of meaningful new biologically active molecules towards desired properties. Several examples establish the strength of artificial intelligence in this field. Combination with synthesis planning and ease of synthesis is feasible and more and more automated drug discovery by computers is expected in the near future.
引用
收藏
页数:13
相关论文
共 85 条
[11]   Prediction of Organic Reaction Outcomes Using Machine Learning [J].
Coley, Connor W. ;
Barzilay, Regina ;
Jaakkola, Tommi S. ;
Green, William H. ;
Jensen, Klays F. .
ACS CENTRAL SCIENCE, 2017, 3 (05) :434-443
[12]   Statistical and machine learning approaches to predicting protein-ligand interactions [J].
Colwell, Lucy J. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2018, 49 :123-128
[13]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[14]  
Duvenaud D.K., 2015, Advances in neural information processing Systems (NIPS), P2224, DOI DOI 10.48550/ARXIV.1509.09292
[15]   Computational prediction of chemical reactions: current status and outlook [J].
Engkvist, Ola ;
Norrby, Per-Ola ;
Selmi, Nidhal ;
Lam, Yu-hong ;
Peng, Zhengwei ;
Sherer, Edward C. ;
Amberg, Willi ;
Erhard, Thomas ;
Smyth, Lynette A. .
DRUG DISCOVERY TODAY, 2018, 23 (06) :1203-1218
[16]   Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions [J].
Ertl, Peter ;
Schuffenhauer, Ansgar .
JOURNAL OF CHEMINFORMATICS, 2009, 1
[17]   Deep learning for chemical reaction prediction [J].
Fooshee, David ;
Mood, Aaron ;
Gutman, Eugene ;
Tavakoli, Mohammadamin ;
Urban, Gregor ;
Liu, Frances ;
Huynh, Nancy ;
Van Vranken, David ;
Baldi, Pierre .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2018, 3 (03) :442-452
[18]   Advancing drug discovery via GPU-based deep learning [J].
Gawehn, Erik ;
Hiss, Jan A. ;
Brown, J. B. ;
Schneider, Gisbert .
EXPERT OPINION ON DRUG DISCOVERY, 2018, 13 (07) :579-582
[19]   6 Deep Learning in Drug Discovery [J].
Gawehn, Erik ;
Hiss, Jan A. ;
Schneider, Gisbert .
MOLECULAR INFORMATICS, 2016, 35 (01) :3-14
[20]  
Ghasemi F., 2018, Drug Discovery Today