Projectile motion via Riemann-Liouville calculus

被引:21
作者
Ahmad, Bashir [1 ]
Batarfi, Hanan [1 ]
Nieto, Juan J. [1 ,2 ]
Otero-Zarraquinos, Oscar [2 ]
Shammakh, Wafa [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
关键词
projectile motion; fractional calculus; Riemann-Liouville derivative; Caputo derivative; RESISTING MEDIUM;
D O I
10.1186/s13662-015-0400-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an analysis of projectile motion in view of fractional calculus. We obtain the solution for the problem using the Riemann-Liouville derivative, and then we compute some features of projectile motion in the framework of Riemann-Liouville fractional calculus. We compare the solutions using Caputo derivatives and Riemann-Liouville derivatives.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 15 条
[1]  
Baleanu D., 2010, New Trends in Nanotechnology and Fractional Calculus Applications
[2]  
Baleanu D., 2012, SERIES COMPLEXITY NO, DOI 10.1142/10044
[3]  
Baleanu D, 2010, CENT EUR J PHYS, V8, P120, DOI [10.2478/s11534-009-0085-x, 10.2478/S11534-009-0085-X]
[4]   Existence of Periodic Solution for a Nonlinear Fractional Differential Equation [J].
Belmekki, Mohammed ;
Nieto, Juan J. ;
Rodriguez-Lopez, Rosana .
BOUNDARY VALUE PROBLEMS, 2009,
[5]   Analysis of projectile motion in view of fractional calculus [J].
Ebaid, Abdelhalim .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (03) :1231-1239
[6]   On the Fractional Hamilton and Lagrange Mechanics [J].
Golmankhaneh, Alireza Khalili ;
Yengejeh, Ali Moslemi ;
Baleanu, Dumitru .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (09) :2909-2916
[7]   Projectile motion in a resistant medium Part II: approximate solution and estimates [J].
Hayen, JC .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2003, 38 (03) :371-380
[8]   Projectile motion in a resistant medium Part 1: exact solution and properties [J].
Hayen, JC .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2003, 38 (03) :357-369
[9]  
Podlubny Igor, 1998, Fractional differential equationsM
[10]   Higher-Order Numerical Scheme for the Fractional Heat Equation with Dirichlet and Neumann Boundary Conditions [J].
Priya, G. Sudha ;
Prakash, P. ;
Nieto, J. J. ;
Kayar, Z. .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2013, 63 (06) :540-559