Data-Driven Predictive Control for Linear Parameter-Varying Systems

被引:39
作者
Verhoek, Chris [1 ]
Abbas, Hossam S. [2 ]
Toth, Roland [1 ,3 ]
Haesaert, Sofie [1 ]
机构
[1] Eindhoven Univ Technol, Control Syst Grp, Dept Elect Engn, NL-5600 MB Eindhoven, Netherlands
[2] Univ Lubeck, Inst Elect Engn Med, D-23558 Lubeck, Germany
[3] Inst Comp Sci & Control SZTAKI, Syst & Control Lab, Kende U 13-17, H-1111 Budapest, Hungary
基金
欧洲研究理事会;
关键词
Predictive Control; Data-Driven Control; Linear Parameter-Varying Systems; Non-Parametric Methods;
D O I
10.1016/j.ifacol.2021.08.588
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on the extension of the behavioral theory and the Fundamental Lemma for Linear Parameter-Varying (LPV) systems, this paper introduces a Data-driven Predictive Control (DPC) scheme capable to ensure reference tracking and satisfaction of Input-Output (IO) constraints for an unknown system under the conditions that (i) the system can be represented in an LPV form and (ii) an informative data-set containing measured IO and scheduling trajectories of the system is available. It is shown that if the data set satisfies a persistence of excitation condition, then a data-driven LPV predictor of future trajectories of the system can be constructed from the IO data set and online measured data. The approach represents the first step towards a DPC solution for nonlinear and time-varying systems due to the potential of the LPV framework to represent them. Two illustrative examples, including reference tracking control of a nonlinear system, are provided to demonstrate that the data-based LPV-DPC scheme, achieves similar performance as LPV model-based predictive control. Copyright (C) 2021 The Authors.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 29 条
[1]  
Abbas H, 2010, P AMER CONTR CONF, P3883
[2]  
[Anonymous], 2010, MODELING IDENTIFICAT
[3]   A trajectory-based framework for data-driven system analysis and control [J].
Berberich, Julian ;
Allgower, Frank .
2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, :1365-1370
[4]   Gain-scheduling MPC of nonlinear systems [J].
Chisci, L ;
Falugi, P ;
Zappa, G .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2003, 13 (3-4) :295-308
[5]  
Cisneros P.G., 2017, P 20 IFAC WORLD C
[6]  
Coulson J, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P307, DOI [10.23919/ecc.2019.8795639, 10.23919/ECC.2019.8795639]
[7]   Linear parameter-varying subspace identification: A unified framework [J].
Cox, Pepijn Bastiaan ;
Toth, Roland .
AUTOMATICA, 2021, 123
[8]  
De Persis C., 2019, P 58 C DEC CONTR
[9]   Formulas for Data-Driven Control: Stabilization, Optimality, and Robustness [J].
De Persis, Claudio ;
Tesi, Pietro .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (03) :909-924
[10]   LPVcore: MATLAB Toolbox for LPV Modelling, Identification and Control [J].
den Boef, Pascal ;
Cox, Pepijn B. ;
Toth, Roland .
IFAC PAPERSONLINE, 2021, 54 (07) :385-390