METAHEURISTIC APPROACHES FOR THE QUADRATIC MINIMUM SPANNING TREE PROBLEM

被引:0
作者
Palubeckis, Gintaras [1 ]
Rubliauskas, Dalius [1 ]
Targamadze, Aleksandras [2 ]
机构
[1] Kaunas Univ Technol, Multimedia Engn Dept, LT-51368 Kaunas, Lithuania
[2] Kaunas Univ Technol, Software Engn Dept, LT-51368 Kaunas, Lithuania
来源
INFORMATION TECHNOLOGY AND CONTROL | 2010年 / 39卷 / 04期
关键词
combinatorial optimization; quadratic minimum spanning tree; metaheuristics; simulated annealing; genetic algorithm; tabu search; MAXIMUM DIVERSITY PROBLEM; ITERATED TABU SEARCH; OPTIMIZATION PROBLEM; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given an undirected graph with costs associated both with its edges and unordered pairs of edges, the quadratic minimum spanning tree problem asks to find a spanning tree that minimizes the sum of costs of all edges and pairs of edges in the tree. We present multistart simulated annealing, hybrid genetic and iterated tabu search algorithms for solving this problem. We report on computational experiments that compare these algorithms on random graphs of size up to 50 vertices. The results indicate that the iterated tabu search algorithm is superior to the other two approaches in terms of both solution quality and computation time.
引用
收藏
页码:257 / 268
页数:12
相关论文
共 22 条
[1]  
ASSAD A, 1992, NAV RES LOG, V39, P399, DOI 10.1002/1520-6750(199204)39:3<399::AID-NAV3220390309>3.0.CO
[2]  
2-0
[3]  
CORDONE R, 2008, 7 COL TWENT WORKSH G, P52
[4]  
CORDONE R, QUADRATIC MINIMUM SP
[5]   Tabu search and GRASP for the maximum diversity problem [J].
Duarte, Abraham ;
Marti, Rafael .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 178 (01) :71-84
[6]   Fuzzy quadratic minimum spanning tree problem [J].
Gao, JW ;
Lu, M .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 164 (03) :773-788
[7]   Diversification-driven tabu search for unconstrained binary quadratic problems [J].
Glover, Fred ;
Lue, Zhipeng ;
Hao, Jin-Kao .
4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2010, 8 (03) :239-253
[8]  
Gottlieb Jens., 2001, Genetic and Evolutionary Computation Conference, P343
[9]  
IPCS, 1995, POIS INF MON PIM 141
[10]  
Kruskal J.B., 1956, Proc Am Math Soc, V7, P48, DOI [10.2307/2033241, DOI 10.1090/S0002-9939-1956-0078686-7]