Boundedness of solutions to a parabolic attraction-repulsion chemotaxis system in R2: The attractive dominant case

被引:6
|
作者
Nagai, Toshitaka [1 ]
Seki, Yukihiro [2 ,4 ]
Yamada, Tetsuya [3 ]
机构
[1] Hiroshima Univ, Dept Math, Higashihiroshima 7398526, Japan
[2] Osaka City Univ, Adv Math Inst, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[3] Fukui Coll, Natl Inst Technol, Course Gen Educ, Fukui 9168507, Japan
[4] Naruto Univ Educ, Naruto, Tokushima 7728502, Japan
基金
日本学术振兴会;
关键词
Global existence; A priori estimate; Boundedness;
D O I
10.1016/j.aml.2021.107354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the Cauchy problem for a parabolic attraction-repulsion chemotaxis system: {partial derivative(t)u = Delta u - del.(beta(1)u del v(1)) + del.(beta(2)u del v(2)), t > 0, x is an element of R-2, partial derivative(t)v(j) = Delta v(j) - lambda(j)v(j) + u, t > 0, x is an element of R-2 (j = 1,2), u(0, x) = u(0)(x), v(j)(0, x) = v(j0)(x), x is an element of R-2 (j = 1, 2) with positive constants beta(j), lambda(j) > 0 (j = 1, 2) satisfying beta(1) > beta(2). In our companion paper, the authors proved the existence of global-in-time solutions for any initial data with (beta(1) - beta(2)) integral(R2) u(0) dx < 8 pi. In this paper, we prove that every solution stays bounded as t -> infinity provided that (beta(1) - beta(2)) integral(R2) u(0) dx < 4 pi. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条