机构:
Osaka City Univ, Adv Math Inst, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
Naruto Univ Educ, Naruto, Tokushima 7728502, JapanHiroshima Univ, Dept Math, Higashihiroshima 7398526, Japan
Seki, Yukihiro
[2
,4
]
Yamada, Tetsuya
论文数: 0引用数: 0
h-index: 0
机构:
Fukui Coll, Natl Inst Technol, Course Gen Educ, Fukui 9168507, JapanHiroshima Univ, Dept Math, Higashihiroshima 7398526, Japan
Yamada, Tetsuya
[3
]
机构:
[1] Hiroshima Univ, Dept Math, Higashihiroshima 7398526, Japan
[2] Osaka City Univ, Adv Math Inst, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[3] Fukui Coll, Natl Inst Technol, Course Gen Educ, Fukui 9168507, Japan
[4] Naruto Univ Educ, Naruto, Tokushima 7728502, Japan
We discuss the Cauchy problem for a parabolic attraction-repulsion chemotaxis system: {partial derivative(t)u = Delta u - del.(beta(1)u del v(1)) + del.(beta(2)u del v(2)), t > 0, x is an element of R-2, partial derivative(t)v(j) = Delta v(j) - lambda(j)v(j) + u, t > 0, x is an element of R-2 (j = 1,2), u(0, x) = u(0)(x), v(j)(0, x) = v(j0)(x), x is an element of R-2 (j = 1, 2) with positive constants beta(j), lambda(j) > 0 (j = 1, 2) satisfying beta(1) > beta(2). In our companion paper, the authors proved the existence of global-in-time solutions for any initial data with (beta(1) - beta(2)) integral(R2) u(0) dx < 8 pi. In this paper, we prove that every solution stays bounded as t -> infinity provided that (beta(1) - beta(2)) integral(R2) u(0) dx < 4 pi. (C) 2021 Elsevier Ltd. All rights reserved.
机构:
Osaka City Univ, Sumiyoshi Ku, Adv Math Inst, 3-3-138 Sugimoto, Osaka 5588585, Japan
Naruto Univ Educ, Naruto, Tokushima 7728502, JapanHiroshima Univ, Dept Math, Higashihiroshima 7398526, Japan
Seki, Yukihiro
Yamada, Tetsuya
论文数: 0引用数: 0
h-index: 0
机构:
Fukui Coll, Natl Inst Technol, Course Gen Educ, Sabae, Fukui 9168507, JapanHiroshima Univ, Dept Math, Higashihiroshima 7398526, Japan
机构:
Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
Southwest Petr Univ Chengdu, Sch Sci, Chengdu 610500, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
Wang, Yilong
Xiang, Zhaoyin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China