Human cellular models of medium spiny neuron development and Huntington disease

被引:18
作者
Golas, Monika M. [1 ,2 ]
机构
[1] Aarhus Univ, Dept Biomed, Wilhelm Meyers Alle 3,Bldg 1233, DK-8000 Aarhus C, Denmark
[2] Hannover Med Sch, Dept Human Genet, Carl Neuberg Str 1, D-30625 Hannover, Germany
关键词
Medium spiny neuron; Striatum; Stem cells; Cell model; Huntington disease; CRISPR/Cas9; Gene editing; PLURIPOTENT STEM-CELLS; ADULT HUMAN FIBROBLASTS; FETAL STRIATAL TRANSPLANTATION; IN-VITRO DIFFERENTIATION; SUBUNIT MESSENGER-RNA; DIRECT CONVERSION; PROGENITOR CELLS; QUINOLINIC ACID; MOUSE FIBROBLASTS; GENE-EXPRESSION;
D O I
10.1016/j.lfs.2018.07.030
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The loss of gamma-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum is the hallmark of Huntington disease (HD), an incurable neurodegenerative disorder characterized by progressive motor, psychiatric, and cognitive symptoms. Transplantation of MSNs or their precursors represents a promising treatment strategy for HD. In initial clinical trials in which HD patients received fetal neurografts directly into the striatum without a pretransplant cell-differentiation step, some patients exhibited temporary benefits. Meanwhile, major challenges related to graft overgrowth, insufficient survival of grafted cells, and limited availability of donated fetal tissue remain. Thus, the development of approaches that allow modeling of MSN differentiation and HD development in cell culture platforms may improve our understanding of HD and translate, ultimately, into HD treatment options. Here, recent advances in the in vitro differentiation of MSNs derived from fetal neural stem cells/progenitor cells (NSCs/NPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and induced NSCs (iNSCs) as well as advances in direct transdifferentiation are reviewed. Progress in non-allele specific and allele specific gene editing of HTT is presented as well. Cell characterization approaches involving phenotyping as well as in vitro and in vivo functional assays are also discussed.
引用
收藏
页码:179 / 196
页数:18
相关论文
共 255 条
[1]   hPSC-Derived Striatal Cells Generated Using a Scalable 3D Hydrogel Promote Recovery in a Huntington Disease Mouse Model [J].
Adil, Maroof M. ;
Gaj, Thomas ;
Rao, Antara T. ;
Kulkarni, Rishikesh U. ;
Fuentes, Christina M. ;
Ramadoss, Gokul N. ;
Ekman, Freja K. ;
Miller, Evan W. ;
Schaffer, David V. .
STEM CELL REPORTS, 2018, 10 (05) :1481-1491
[2]   Genetic Correction of Huntington's Disease Phenotypes in Induced Pluripotent Stem Cells [J].
An, Mahru C. ;
Zhang, Ningzhe ;
Scott, Gary ;
Montoro, Daniel ;
Wittkop, Tobias ;
Mooney, Sean ;
Melov, Simon ;
Ellerby, Lisa M. .
CELL STEM CELL, 2012, 11 (02) :253-263
[3]   Harmonizing standards for producing clinical-grade therapies from pluripotent stem cells [J].
Andrews, Peter W. ;
Cavagnaro, Joy ;
Deans, Robert ;
Feigal, Ellen ;
Horowitz, Ed ;
Keating, Armand ;
Rao, Mahendra ;
Turner, Marc ;
Wilmut, Ian ;
Yamanaka, Shinya .
NATURE BIOTECHNOLOGY, 2014, 32 (08) :724-726
[4]   CEND1 and NEUROGENIN2 Reprogram Mouse Astrocytes and Embryonic Fibroblasts to Induced Neural Precursors and Differentiated Neurons [J].
Aravantinou-Fatorou, Katerina ;
Ortega, Felipe ;
Chroni-Tzartou, Dafni ;
Antoniou, Nasia ;
Poulopoulou, Cornelia ;
Politis, Panagiotis K. ;
Berninger, Benedikt ;
Matsas, Rebecca ;
Thomaidou, Dimitra .
STEM CELL REPORTS, 2015, 5 (03) :405-418
[5]   Activin A directs striatal projection neuron differentiation of human pluripotent stem cells [J].
Arber, Charles ;
Precious, Sophie V. ;
Cambray, Serafi ;
Risner-Janiczek, Jessica R. ;
Kelly, Claire ;
Noakes, Zoe ;
Fjodorova, Marija ;
Heuer, Andreas ;
Ungless, Mark A. ;
Rodriguez, Tristan A. ;
Rosser, Anne E. ;
Dunnett, Stephen B. ;
Li, Meng .
DEVELOPMENT, 2015, 142 (07) :1375-1386
[6]   Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum [J].
Arlotta, Paola ;
Molyneaux, Bradley J. ;
Jabaudon, Denis ;
Yoshida, Yutaka ;
Macklis, Jeffrey D. .
JOURNAL OF NEUROSCIENCE, 2008, 28 (03) :622-632
[7]   Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats [J].
Aubry, Laetitia ;
Bugi, Aurore ;
Lefort, Nathalie ;
Rousseau, France ;
Peschanski, Marc ;
Perrier, Anselme L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (43) :16707-16712
[8]   Motor and cognitive improvements in patients with Huntington's disease after neural transplantation [J].
Bachoud-Lévi, A ;
Rémy, P ;
Nguyen, JP ;
Brugières, P ;
Lefaucheur, JP ;
Bourdet, C ;
Baudic, S ;
Gaura, V ;
Maison, P ;
Haddad, B ;
Boissé, MF ;
Grandmougin, T ;
Jény, R ;
Bartolomeo, P ;
Dalla Barba, G ;
Degos, JD ;
Lisovoski, F ;
Ergis, AM ;
Pailhous, E ;
Cesaro, P ;
Hantraye, P ;
Peschanski, M .
LANCET, 2000, 356 (9246) :1975-1979
[9]   Effect of fetal neural transplants inpatients with Huntington's disease 6 years after surgery:: a long-term follow-up study [J].
Bachoud-Lévi, AC ;
Gaura, V ;
Brugières, P ;
Lefaucheur, JP ;
Boissé, MF ;
Maison, P ;
Baudic, S ;
Ribeiro, MJ ;
Bourdet, C ;
Remy, P ;
Cesaro, P ;
Hantraye, P ;
Peschanski, M .
LANCET NEUROLOGY, 2006, 5 (04) :303-309
[10]   From open to large-scale randomized cell transplantation trials in Huntington's disease: Lessons from the multicentric intracerebral grafting in Huntington's disease trial (MIG-HD) and previous pilot studies [J].
Bachoud-Levi, Anne-Catherine .
FUNCTIONAL NEURAL TRANSPLANTATION IV: TRANSLATION TO CLINICAL APPLICATION, PT A, 2017, 230 :227-261