Synthesis of TiO2@g-C3N4 core-shell nanorod arrays with Z-scheme enhanced photocatalytic activity under visible light

被引:66
作者
Hao, Jinggang [1 ]
Zhang, Shaofeng [1 ]
Ren, Feng [2 ]
Wang, Zhaowu [1 ,3 ]
Lei, Jianfei [1 ]
Wang, Xuening [2 ]
Cheng, Tao [1 ]
Li, Liben [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Phys & Engn, Luoyang 471000, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
In-situ formation; TiO2@g-C3N4; Core-shell structure; Z-scheme; Photocatalysis; GRAPHITIC CARBON NITRIDE; NANOTUBE ARRAYS; G-C3N4; WATER; PHOTODEGRADATION; DEGRADATION;
D O I
10.1016/j.jcis.2017.08.065
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novel rutile TiO2@g-C3N4 core-shell photocatalysts were synthesized by a facile saturated aqueous solution method. The composites were further characterized by using X-ray diffraction (XRD), high-resolution transmission microscopy (HRTEM), UV-visible light diffusion reflectance spectrometry (DRS), X-ray photoelectron spectroscopy (XPS) and so on. The results indicated that an ultrathin layer of g-C3N4 was in situ fabricated over the surface of rutile TiO2 nanorod. The rutile TiO2@ g-C3N4 core-shell structures showed much higher photo-current and photocatalytic activity for Rhodamine B (RhB) degradation under visible irradiation. The enhanced performance was attributed to the high separation efficiency of photo induced carriers via a Z-scheme form. (C) 2017 Published by Elsevier Inc.
引用
收藏
页码:419 / 425
页数:7
相关论文
共 38 条
[21]   Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light [J].
Ma, Jinzhu ;
Wang, Caixia ;
He, Hong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 184 :28-34
[22]   Self-Supported Nanotube Arrays of Sulfur-Doped TiO2 Enabling Ultrastable and Robust Sodium Storage [J].
Ni, Jiangfeng ;
Fu, Shidong ;
Wu, Chao ;
Maier, Joachim ;
Yu, Yan ;
Li, Liang .
ADVANCED MATERIALS, 2016, 28 (11) :2259-2265
[23]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[24]   SnO2 Based Materials and Their Energy Storage Studies [J].
Reddy, M. V. ;
Tran Thuy Linh ;
Dang Thu Hien ;
Chowdari, B. V. R. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (12) :6268-6276
[25]   Influence of g-C3N4 Nanosheets on Thermal Stability and Mechanical Properties of Biopolymer Electrolyte Nanocomposite Films: A Novel Investigation [J].
Shi, Yongqian ;
Jiang, Saihua ;
Zhou, Keqing ;
Bao, Chenlu ;
Yu, Bin ;
Qian, Xiaodong ;
Wang, Bibo ;
Hong, Ningning ;
Wen, Panyue ;
Gui, Zhou ;
Hu, Yuan ;
Yuen, Richard K. K. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (01) :429-437
[26]   Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3N4) Photocatalyst Activated by Visible Light [J].
Shiraishi, Yasuhiro ;
Kanazawa, Shunsuke ;
Sugano, Yoshitsune ;
Tsukamoto, Daijiro ;
Sakamoto, Hirokatsu ;
Ichikawa, Satoshi ;
Hirai, Takayuki .
ACS CATALYSIS, 2014, 4 (03) :774-780
[27]   Facile synthesis of high photocatalytic active porous g-C3N4 with ZnCl2 template [J].
Sun, Xiao Dan ;
Li, Yan Yan ;
Zhou, Jun ;
Ma, Cheng Hai ;
Wang, Ying ;
Zhu, Jian Hua .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 451 :108-116
[28]   Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution [J].
Wang, Jing ;
Xia, Yi ;
Zhao, Hongyuan ;
Wang, Guifang ;
Xiang, Lan ;
Xu, Jianlong ;
Komarneni, Sridhar .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 206 :406-416
[29]  
Wang XC, 2009, NAT MATER, V8, P76, DOI [10.1038/nmat2317, 10.1038/NMAT2317]
[30]   Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry [J].
Wang, Yong ;
Wang, Xinchen ;
Antonietti, Markus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (01) :68-89