Domination in Generalized Cayley Graph of Commutative Rings

被引:1
作者
Selvakumar, K. [1 ]
Subajini, M. [1 ]
Pirzada, S. [2 ]
机构
[1] Manonmaniam Sundaranar Univ, Dept Math, Tirunelveli, Tamil Nadu, India
[2] Univ Kashmir, Dept Math, Srinagar, Kashmir, India
关键词
Ring; Cayley graph; generalized Cayley graph; domination number;
D O I
10.4208/jms.v54n4.21.07
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity and n be a natural number. The generalized Cayley graph of R, denoted by Gamma(n)(R), is the graph whose vertex set is R-n\{0} and two distinct vertices X and Y are adjacent if and only if there exists an nxn lower triangular matrix A over R whose entries on the main diagonal are non-zero such that AX(T) = Y-T or AY(T) = X-T, where for a matrix B, B-T is the matrix transpose of B. In this paper, we give some basic properties of Gamma(n)(R) and we determine the domination parameters of Gamma(n)(R).
引用
收藏
页码:427 / 434
页数:8
相关论文
共 20 条
[1]   Generalized Cayley graphs associated to commutative rings [J].
Afkhami, Mojgan ;
Khashyarmanesh, Kazem ;
Nafar, Khosro .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (03) :1040-1049
[2]  
[Anonymous], 1993, Algebraic Graph Theory
[3]  
Atiyah MF., 1969, Introduction to Commutative Algebra
[4]  
Chartrand G., 1986, INTRO GRAPH THEORY
[5]   On Cayley graphs of bands [J].
Fan, Suohai ;
Zeng, Yanshan .
SEMIGROUP FORUM, 2007, 74 (01) :99-105
[6]  
Haynes T. W., 1998, MONOGRAPH TXB PURE A
[7]  
Kaplansky I., 1974, Commutative rings
[8]   On Cayley graphs of inverse semigroups [J].
Kelarev, A. V. .
SEMIGROUP FORUM, 2006, 72 (03) :411-418
[9]  
Kelarev A. V., 2004, AUSTRALAS J COMBIN, V30, P95
[10]   A combinatorial property and Cayley graphs of semigroups [J].
Kelarev, AV ;
Quinn, SJ .
SEMIGROUP FORUM, 2003, 66 (01) :89-96