Synchronization in disordered oscillator lattices: Nonequilibrium phase transition for driven-dissipative bosons

被引:12
作者
Moroney, John P. [1 ]
Eastham, Paul R. [1 ]
机构
[1] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 04期
基金
爱尔兰科学基金会;
关键词
DIRECTED POLYMERS; RANDOM-MEDIA; DIFFUSION; KURAMOTO;
D O I
10.1103/PhysRevResearch.3.043092
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that lattices of phase oscillators with random natural frequencies undergo a transition from a desynchronized to a synchronized state for dimensions d < 4. The oscillators are described by a generalization of the nearest-neighbor Kuramoto model with an additional cosine coupling term. This model may be derived from the complex Ginzburg-Landau equations for a lattice of driven-dissipative Bose-Einstein condensates of exciton polaritons. We derive phase diagrams that classify the desynchronized and synchronized states, focusing on the behavior in one and two dimensions. This is achieved by outlining the connection of the oscillator model to the quantum description of localization of a particle in a random potential through a mapping to a modified Kardar-Parisi-Zhang equation. Our results indicate that synchronization in coupled polariton condensates and other examples of low-dimensional lattices of coupled oscillators is not destroyed by randomness in their natural frequencies.
引用
收藏
页数:8
相关论文
共 41 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Radiative coupling and weak lasing of exciton-polariton condensates [J].
Aleiner, I. L. ;
Altshuler, B. L. ;
Rubo, Y. G. .
PHYSICAL REVIEW B, 2012, 85 (12)
[3]   Two-Dimensional Superfluidity of Exciton Polaritons Requires Strong Anisotropy [J].
Altman, Ehud ;
Sieberer, Lukas M. ;
Chen, Leiming ;
Diehl, Sebastian ;
Toner, John .
PHYSICAL REVIEW X, 2015, 5 (01)
[4]   Exciton-polaritons in lattices: A non-linear photonic simulator [J].
Amo, Alberto ;
Bloch, Jacqueline .
COMPTES RENDUS PHYSIQUE, 2016, 17 (08) :934-945
[5]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[6]   Synchronized and desynchronized phases of exciton-polariton condensates in the presence of disorder [J].
Baas, A. ;
Lagoudakis, K. G. ;
Richard, M. ;
Andre, R. ;
Dang, Le Si ;
Deveaud-Pledran, B. .
PHYSICAL REVIEW LETTERS, 2008, 100 (17)
[7]  
Berloff NG, 2017, NAT MATER, V16, P1120, DOI [10.1038/NMAT4971, 10.1038/nmat4971]
[8]   Adiabatic approximation and fluctuations in exciton-polariton condensates [J].
Bobrovska, Nataliya ;
Matuszewski, Michal .
PHYSICAL REVIEW B, 2015, 92 (03)
[9]   Quantum fluids of light [J].
Carusotto, Iacopo ;
Ciuti, Cristiano .
REVIEWS OF MODERN PHYSICS, 2013, 85 (01) :299-366
[10]   DIFFUSION AND REACTION IN RANDOM-MEDIA AND MODELS OF EVOLUTION PROCESSES [J].
EBELING, W ;
ENGEL, A ;
ESSER, B ;
FEISTEL, R .
JOURNAL OF STATISTICAL PHYSICS, 1984, 37 (3-4) :369-384