Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks

被引:47
作者
Zhang, Tielin [1 ,2 ]
Cheng, Xiang [1 ,2 ]
Jia, Shuncheng [1 ,2 ]
Poo, Mu-Ming [2 ,3 ,4 ,5 ]
Zeng, Yi [1 ,2 ,4 ]
Xu, Bo [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Res Ctr Brain Inspired Intelligence, Inst Automat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Neurosci, State Key Lab Neurosci, Shanghai 200031, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai 200031, Peoples R China
[5] Shanghai Ctr Brain Sci & Brain Inspired Intellige, Shanghai 201210, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
LONG-TERM POTENTIATION; PROPAGATION; NEURONS; MEMORY; MODEL;
D O I
10.1126/sciadv.abh0146
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many synaptic plasticity rules found in natural circuits have not been incorporated into artificial neural networks (ANNs). We showed that incorporating a nonlocal feature of synaptic plasticity found in natural neural networks, whereby synaptic modification at output synapses of a neuron backpropagates to its input synapses made by upstream neurons, markedly reduced the computational cost without affecting the accuracy of spiking neural networks (SNNs) and ANNs in supervised learning for three benchmark tasks. For SNNs, synaptic modification at output neurons generated by spike timing-dependent plasticity was allowed to self-propagate to limited upstream synapses. For ANNs, modified synaptic weights via conventional backpropagation algorithm at output neurons self-backpropagated to limited upstream synapses. Such self-propagating plasticity may produce coordinated synaptic modifications across neuronal layers that reduce computational cost.
引用
收藏
页数:11
相关论文
共 49 条
[1]   Building functional networks of spiking model neurons [J].
Abbott, L. F. ;
DePasquale, Brian ;
Memmesheimer, Raoul-Martin .
NATURE NEUROSCIENCE, 2016, 19 (03) :350-355
[2]   A Low Power, Fully Event-Based Gesture Recognition System [J].
Amir, Arnon ;
Taba, Brian ;
Berg, David ;
Melano, Timothy ;
McKinstry, Jeffrey ;
Di Nolfo, Carmelo ;
Nayak, Tapan ;
Andreopoulos, Alexander ;
Garreau, Guillaume ;
Mendoza, Marcela ;
Kusnitz, Jeff ;
Debole, Michael ;
Esser, Steve ;
Delbruck, Tobi ;
Flickner, Myron ;
Modha, Dharmendra .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :7388-7397
[3]  
[Anonymous], 2018, 2018 INT JOINT C NEU, DOI [DOI 10.1109/IJCNN.2018.8489673, 10.1109/IJCNN.2018.8489673]
[4]   A solution to the learning dilemma for recurrent networks of spiking neurons [J].
Bellec, Guillaume ;
Scherr, Franz ;
Subramoney, Anand ;
Hajek, Elias ;
Salaj, Darjan ;
Legenstein, Robert ;
Maass, Wolfgang .
NATURE COMMUNICATIONS, 2020, 11 (01)
[5]   STDP-Compatible Approximation of Backpropagation in an Energy-Based Model [J].
Bengio, Yoshua ;
Mesnard, Thomas ;
Fischer, Asja ;
Zhang, Saizheng ;
Wu, Yuhuai .
NEURAL COMPUTATION, 2017, 29 (03) :555-577
[6]   Synaptic modification by correlated activity: Hebb's postulate revisited [J].
Bi, GQ ;
Poo, MM .
ANNUAL REVIEW OF NEUROSCIENCE, 2001, 24 :139-166
[7]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[8]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39
[9]   Error-backpropagation in temporally encoded networks of spiking neurons [J].
Bohte, SM ;
Kok, JN ;
La Poutré, H .
NEUROCOMPUTING, 2002, 48 :17-37
[10]   THE RECENT EXCITEMENT ABOUT NEURAL NETWORKS [J].
CRICK, F .
NATURE, 1989, 337 (6203) :129-132