UNIQUENESS OF BOUNDED SOLUTIONS FOR THE HOMOGENEOUS RELATIVISTIC LANDAU EQUATION WITH COULOMB INTERACTIONS

被引:4
作者
Strain, Robert M. [1 ]
Wang, Zhenfu [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
Relativistic Landau equation; weak solutions; stochastic representation; uniqueness; Wasserstein distance; CLASSICAL-SOLUTIONS; BOLTZMANN-EQUATION; EXPONENTIAL DECAY; HARD POTENTIALS; SOFT POTENTIALS; STABILITY; SYSTEM;
D O I
10.1090/qam/1545
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the uniqueness of weak solutions to the spatially homogeneous special relativistic Landau equation under the conditional assumption that the solution satisfies (p(0))F-7(t, p) is an element of L-1([0, T]; L-infinity). The existence of standard weak solutions to the relativistic Landau equation has been shown recently in [J. Funct. Anal. 277 (2019), pp. 1139-1201].
引用
收藏
页码:107 / 145
页数:39
相关论文
共 46 条
[1]   SOME A PRIORI ESTIMATES FOR THE HOMOGENEOUS LANDAU EQUATION WITH SOFT POTENTIALS [J].
Alexandre, Radjesvarane ;
Liao, Jie ;
Lin, Chunjin .
KINETIC AND RELATED MODELS, 2015, 8 (04) :617-650
[2]  
Arsenev A. A., 1977, USSR Comput. Math. and Math. Phys., V17, P241
[3]  
BELIAEV ST, 1956, DOKL AKAD NAUK SSSR+, V107, P807
[4]  
Belyaev S. T., 1961, PLASMA PHYS PROBL, P431
[5]   INVARIANT-MEASURES AND EVOLUTION-EQUATIONS FOR MARKOV-PROCESSES CHARACTERIZED VIA MARTINGALE PROBLEMS [J].
BHATT, AG ;
KARANDIKAR, RL .
ANNALS OF PROBABILITY, 1993, 21 (04) :2246-2268
[6]   On the Rate of Relaxation for the Landau Kinetic Equation and Related Models [J].
Bobylev, Alexander ;
Gamba, Irene M. ;
Zhang, Chenglong .
JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (03) :535-548
[7]  
Carrapatoso K., 2017, Annals of PDE, V3, P1
[8]   Estimates for the Large Time Behavior of the Landau Equation in the Coulomb Case [J].
Carrapatoso, Kleber ;
Desvillettes, Laurent ;
He, Lingbing .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (02) :381-420
[9]   Entropy dissipation estimates for the Landau equation in the Coulomb case and applications [J].
Desvillettes, L. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (05) :1359-1403
[10]   On the spatially homogeneous landau equation for hard potentials - Part I: Existence, uniqueness and smoothness [J].
Desvillettes, L ;
Villani, C .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (1-2) :179-259