Glioblastoma Surgery Imaging-Reporting and Data System: Validation and Performance of the Automated Segmentation Task

被引:15
作者
Bouget, David [1 ]
Eijgelaar, Roelant S. [2 ,3 ]
Pedersen, Andre [1 ]
Kommers, Ivar [2 ,3 ]
Ardon, Hilko [4 ]
Barkhof, Frederik [5 ,6 ,7 ]
Bello, Lorenzo [8 ]
Berger, Mitchel S. [9 ]
Nibali, Marco Conti [8 ]
Furtner, Julia [10 ]
Fyllingen, Even Hovig [11 ,12 ]
Hervey-Jumper, Shawn [9 ]
Idema, Albert J. S. [13 ]
Kiesel, Barbara [14 ]
Kloet, Alfred [15 ]
Mandonnet, Emmanuel [16 ]
Muller, Domenique M. J. [2 ,3 ]
Robe, Pierre A. [17 ]
Rossi, Marco [8 ]
Sagberg, Lisa M. [18 ]
Sciortino, Tommaso [8 ]
Van den Brink, Wimar A. [19 ]
Wagemakers, Michiel [20 ]
Widhalm, Georg [14 ]
Witte, Marnix G. [21 ]
Zwinderman, Aeilko H. [22 ]
Reinertsen, Ingerid [1 ,20 ]
Hamer, Philip C. De Witt [2 ,3 ]
Solheim, Ole [22 ,23 ]
机构
[1] SINTEF Digital, Dept Hlth Res, NO-7465 Trondheim, Norway
[2] Vrije Univ, Amsterdam Univ Med Ctr, Dept Neurosurg, NL-1081 HV Amsterdam, Netherlands
[3] Univ Amsterdam, Canc Ctr Amsterdam, Brain Tumor Ctr, Med Ctr, NL-1081 HV Amsterdam, Netherlands
[4] Twee Steden Hosp, Dept Neurosurg, NL-5042 AD Tilburg, Netherlands
[5] Vrije Univ, Amsterdam Univ Med Ctr, Dept Radiol & Nucl Med, NL-1081 HV Amsterdam, Netherlands
[6] UCL, Inst Neurol, London WC1E 6BT, England
[7] UCL, Inst Healthcare Engn, London WC1E 6BT, England
[8] Univ Milan, Humanitas Res Hosp, Dept Oncol & Hematooncol, Neurosurg Oncol Unit, I-20122 Milan, Italy
[9] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94143 USA
[10] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, A-1090 Vienna, Austria
[11] Norwegian Univ Sci & Technol, Dept Circulat & Med Imaging, NO-7030 Trondheim, Norway
[12] Trondheim Reg & Univ Hosp, Dept Radiol & Nucl Med, St Olavs Hosp, NO-7030 Trondheim, Norway
[13] Northwest Clin, Dept Neurosurg, NL-1815 JD Alkmaar, Netherlands
[14] Med Univ Vienna, Dept Neurosurg, A-1090 Vienna, Austria
[15] Haaglanden Med Ctr, Dept Neurosurg, NL-2512 VA The Hague, Netherlands
[16] Hop Lariboisiere, Dept Neurol Surg, F-75010 Paris, France
[17] Univ Med Ctr Utrecht, Dept Neurol & Neurosurg, NL-3584 CX Utrecht, Netherlands
[18] Trondheim Reg & Univ Hosp, Dept Neurosurg, St Olavs Hosp, NO-7030 Trondheim, Norway
[19] Isala Hosp Zwolle, Dept Neurosurg, NL-8025 AB Zwolle, Netherlands
[20] Univ Groningen, Univ Med Ctr Groningen, Dept Neurosurg, NL-9713 GZ Groningen, Netherlands
[21] Netherlands Canc Inst, Dept Radiat Oncol, NL-1066 CX Amsterdam, Netherlands
[22] Univ Amsterdam, Dept Clin Epidemiol & Biostat, Med Ctr, NL-1105 AZ Amsterdam, Netherlands
[23] Norwegian Univ Sci & Technol, Dept Neuromed & Movement Sci, NO-7491 Trondheim, Norway
关键词
glioblastoma; deep learning; 3D segmentation; computer-assisted image processing; magnetic resonance imaging; neuroimaging; HUMAN CEREBRAL-CORTEX; RADIOMICS; ORGANIZATION; VOLUME; TUMORS; AGE;
D O I
10.3390/cancers13184674
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
For patients with presumed glioblastoma, essential tumor characteristics are determined from preoperative MR images to optimize the treatment strategy. This procedure is time-consuming and subjective, if performed by crude eyeballing or manually. The standardized GSI-RADS aims to provide neurosurgeons with automatic tumor segmentations to extract tumor features rapidly and objectively. In this study, we improved automatic tumor segmentation and compared the agreement with manual raters, describe the technical details of the different components of GSI-RADS, and determined their speed. Two recent neural network architectures were considered for the segmentation task: nnU-Net and AGU-Net. Two preprocessing schemes were introduced to investigate the tradeoff between performance and processing speed. A summarized description of the tumor feature extraction and standardized reporting process is included. The trained architectures for automatic segmentation and the code for computing the standardized report are distributed as open-source and as open-access software. Validation studies were performed on a dataset of 1594 gadolinium-enhanced T1-weighted MRI volumes from 13 hospitals and 293 T1-weighted MRI volumes from the BraTS challenge. The glioblastoma tumor core segmentation reached a Dice score slightly below 90%, a patientwise F1-score close to 99%, and a 95th percentile Hausdorff distance slightly below 4.0 mm on average with either architecture and the heavy preprocessing scheme. A patient MRI volume can be segmented in less than one minute, and a standardized report can be generated in up to five minutes. The proposed GSI-RADS software showed robust performance on a large collection of MRI volumes from various hospitals and generated results within a reasonable runtime.
引用
收藏
页数:23
相关论文
共 51 条
[1]   MRI Posttreatment Surveillance for Head and Neck Squamous Cell Carcinoma: Proposed MR NI-RADS Criteria [J].
Ashour, M. M. ;
Darwish, E. A. F. ;
Fahiem, R. M. ;
Abdelaziz, T. T. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2021, 42 (06) :1123-1129
[2]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[5]   Volumetric segmentation of glioblastoma progression compared to bidimensional products and clinical radiological reports [J].
Berntsen, Erik Magnus ;
Stensjoen, Anne Line ;
Langlo, Maren Staurset ;
Simonsen, Solveig Quam ;
Christensen, Pal ;
Moholdt, Viggo Andreas ;
Solheim, Ole .
ACTA NEUROCHIRURGICA, 2020, 162 (02) :379-387
[6]   Collection and fuzzy estimation of truth labels in glial tumour segmentation studies [J].
Binaghi, Elisabetta ;
Pedoia, Valentina ;
Balbi, Sergio .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2016, 4 (3-4) :214-228
[7]   Meningioma Segmentation in T1-Weighted MRI Leveraging Global Context and Attention Mechanisms [J].
Bouget, David ;
Pedersen, Andre ;
Hosainey, Sayied Abdol Mohieb ;
Solheim, Ole ;
Reinertsen, Ingerid .
FRONTIERS IN RADIOLOGY, 2021, 1
[8]   Fast meningioma segmentation in T1-weighted magnetic resonance imaging volumes using a lightweight 3D deep learning architecture [J].
Bouget, David ;
Pedersen, Andre ;
Hosainey, Sayied Abdol Mohieb ;
Vanel, Johanna ;
Solheim, Ole ;
Reinertsen, Ingerid .
JOURNAL OF MEDICAL IMAGING, 2021, 8 (02)
[9]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[10]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49