Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk

被引:46
作者
Fang, Zhiwei [1 ,2 ]
Luo, Haipeng [3 ]
Lin, Jintian [4 ]
Wang, Min [1 ,2 ]
Zhang, Jianhao [4 ]
Wu, Rongbo [4 ]
Zhou, Junxia [1 ,2 ]
Chu, Wei [4 ]
Lu, Tao [3 ]
Cheng, Ya [1 ,2 ,4 ,5 ]
机构
[1] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] East China Normal Univ, Sch Phys & Elect Sci, XXL Extreme Optoelectromech Lab, Shanghai 200241, Peoples R China
[3] Univ Victoria, Dept Elect & Comp Engn, Columbia, BC V8P 5C2, Canada
[4] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai 201800, Peoples R China
[5] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
COMB GENERATION; MICRORESONATOR; LOCKING;
D O I
10.1364/OL.44.005953
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate efficient tuning of a monolithically integrated lithium niobate (LN) microdisk optical frequency microcomb. Utilizing the high optical quality (Q) factor (i.e., Q similar to 7.1 x 10(6)) of the microdisk, the microcomb spans over a spectral bandwidth of similar to 200 nm at a pump power as low as 20.4 mW. Combining the large electro-optic coefficient of LN and the optimum design of the geometry of microelectrodes, we demonstrate electro-optical tuning of the comb with a spectral range of 400 pm and a tuning efficiency of similar to 38 pm/100 V. (C) 2019 Optical Society of America
引用
收藏
页码:5953 / 5956
页数:4
相关论文
共 25 条
[1]   Colloquium:: Femtosecond optical frequency combs [J].
Cundiff, ST ;
Ye, J .
REVIEWS OF MODERN PHYSICS, 2003, 75 (01) :325-342
[2]   Optical frequency comb generation from a monolithic microresonator [J].
Del'Haye, P. ;
Schliesser, A. ;
Arcizet, O. ;
Wilken, T. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE, 2007, 450 (7173) :1214-1217
[3]   Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator [J].
Fang, Zhiwei ;
Haque, Sanaul ;
Lin, Jintian ;
Wu, Rongbo ;
Zhang, Jianhao ;
Wang, Min ;
Zhou, Junxia ;
Rafa, Muniyat ;
Lu, Tao ;
Cheng, Ya .
OPTICS LETTERS, 2019, 44 (05) :1214-1217
[4]   Photonic-chip-based frequency combs [J].
Gaeta, Alexander L. ;
Lipson, Michal ;
Kippenberg, Tobias J. .
NATURE PHOTONICS, 2019, 13 (03) :158-169
[5]   Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators [J].
Gong, Zheng ;
Liu, Xianwen ;
Xu, Yuntao ;
Xu, Mingrui ;
Surya, Joshua B. ;
Lu, Juanjuan ;
Bruch, Alexander ;
Zou, Changling ;
Tang, Hong X. .
OPTICS LETTERS, 2019, 44 (12) :3182-3185
[6]  
Guo H, 2017, NAT PHYS, V13, P94, DOI [10.1038/NPHYS3893, 10.1038/nphys3893]
[7]   Mode-locking of lasers [J].
Haus, HA .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000, 6 (06) :1173-1185
[8]   Stokes and anti-Stokes Raman scatterings from frequency comb lines in poly-crystalline aluminum nitride microring resonators [J].
Jung, Hojoong ;
Gong, Zheng ;
Liu, Xianwen ;
Guo, Xiang ;
Zou, Chang-ling ;
Tang, Hong X. .
OPTICS EXPRESS, 2019, 27 (16) :22246-22253
[9]   Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator [J].
Jung, Hojoong ;
Stoll, Rebecca ;
Guo, Xiang ;
Fischer, Debra ;
Tang, Hong X. .
OPTICA, 2014, 1 (06) :396-399
[10]   Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators [J].
Jung, Hojoong ;
Fong, King Y. ;
Xiong, Chi ;
Tang, Hong X. .
OPTICS LETTERS, 2014, 39 (01) :84-87