Origin of volatile organic compound emissions from subarctic tundra under global warming

被引:42
|
作者
Ghirardo, Andrea [1 ]
Lindstein, Frida [2 ]
Koch, Kerstin [1 ]
Buegger, Franz [3 ]
Schloter, Michael [4 ]
Albert, Andreas [1 ]
Michelsen, Anders [2 ,5 ]
Winkler, J. Barbro [1 ]
Schnitzler, Jorg-Peter [1 ]
Rinnan, Riikka [2 ,5 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Biochem Plant Pathol, Res Unit Environm Simulat EUS, Neuherberg, Germany
[2] Univ Copenhagen, Dept Biol, Terr Ecol Sect, Copenhagen, Denmark
[3] Helmholtz Zentrum Munchen, Inst Biochem Plant Pathol BIOP, Neuherberg, Germany
[4] Helmholtz Zentrum Munchen, Res Unit Comparat Microbiome Anal COMI, Neuherberg, Germany
[5] Univ Copenhagen, Ctr Permafrost, Dept Geosci & Nat Resource Management, Copenhagen, Denmark
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
(CO2)-C-13; Arctic; climate change; de novo biosynthesis; global warming; net ecosystem exchange; subarctic heath; terpene; tundra; volatile organic compound; ISOPRENOID EMISSIONS; CLIMATE-CHANGE; SOIL CARBON; MICROBIAL COMMUNITIES; SPECIES COMPOSITION; PLANT VOLATILES; ALPHA-PINENE; CROSS-TALK; DE-NOVO; CO2;
D O I
10.1111/gcb.14935
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature-dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using (CO2)-C-13-labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil-plant-atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5 degrees C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The C-13 was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%-44% (Salix) and 60%-68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%-58% (Salix) and 87%-95% (Betula). Analyses of above- and belowground C-12/13 showed shifts of C allocation in the plant-soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.
引用
收藏
页码:1908 / 1925
页数:18
相关论文
共 50 条
  • [31] Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses
    Copolovici, Lucian
    Kaennaste, Astrid
    Remmel, Triinu
    Niinemets, Uelo
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2014, 100 : 55 - 63
  • [32] Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions
    Valolahti, Hanna
    Kivimaenpaa, Minna
    Faubert, Patrick
    Michelsen, Anders
    Rinnan, Riikka
    GLOBAL CHANGE BIOLOGY, 2015, 21 (09) : 3478 - 3488
  • [33] Volatile organic compound emissions during HOMEChem
    Arata, Caleb
    Misztal, Pawel K.
    Tian, Yilin
    Lunderberg, David M.
    Kristensen, Kasper
    Novoselac, Atila
    Vance, Marina E.
    Farmer, Delphine K.
    Nazaroff, William W.
    Goldstein, Allen H.
    INDOOR AIR, 2021, 31 (06) : 2099 - 2117
  • [34] Volatile Organic Compound Emissions in the Changing Arctic
    Rinnan, Riikka
    ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS, 2024, 55 : 227 - 249
  • [35] Volatile organic compound emissions from typical industries: Implications for the importance of oxygenated volatile organic compounds
    Wang, Wenjing
    Yan, Yunzhi
    Fang, Hua
    Li, Jun
    Zha, Shuping
    Wu, Ting
    ATMOSPHERIC POLLUTION RESEARCH, 2023, 14 (01)
  • [36] Volatile organic compound emissions from agriculture in Central Valley, California
    Warneke, Carsten
    de Gouw, Joost A.
    Nowak, John B.
    Peischl, Jeff
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [37] Biogenic volatile organic compound emissions from a boreal forest floor
    Wang, Min
    Schurgers, Guy
    Hellen, Heidi
    Lagergren, Fredrik
    Holst, Thomas
    BOREAL ENVIRONMENT RESEARCH, 2018, 23 : 249 - 265
  • [38] Impact of air pressure on volatile organic compound emissions from a carpet
    Gao Peng
    Deng Qing-qing
    Lin Chao-hsin
    Yang Xu-dong
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2009, 16 : 1 - 5
  • [39] Sampling Volatile Organic Compound Emissions from Consumer Products: A Review
    Haug, Helen
    Klein, Luise
    Sauerwald, Tilman
    Poelke, Birte
    Beauchamp, Jonathan
    Roloff, Alexander
    CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2024, 54 (07) : 1895 - 1916
  • [40] Determination of total volatile organic compound emissions from furniture polishes
    Hai Guo
    Frank Murray
    Clean Products and Processes, 2001, 3 (1): : 42 - 48