General decay result for nonlinear viscoelastic equations

被引:67
作者
Mustafa, Muhammad I. [1 ]
机构
[1] Univ Sharjah, Dept Math, POB 27272, Sharjah, U Arab Emirates
关键词
General decay; Viscoelastic damping; Relaxation function; Convexity; 2ND-ORDER EVOLUTION-EQUATIONS; ASYMPTOTIC-BEHAVIOR; LINEAR VISCOELASTICITY; DISSIPATIVE SYSTEMS; VOLTERRA EQUATION; GLOBAL EXISTENCE; UNIFORM DECAY; MEMORY; ENERGY; STABILITY;
D O I
10.1016/j.jmaa.2017.08.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a nonlinear viscoelastic equation with minimal conditions on the L-1 (0, infinity) relaxation function g namely g'(t) <=-xi(t)H(g(t)), where H is an increasing and convex function near the origin and xi is a nonincreasing function. With only these very general assumptions on the behavior of g at infinity, we establish optimal explicit and general energy decay results from which we can recover the optimal exponential and polynomial rates when H(s) = s(p) and p covers the full admissible range [1,2). We get the best decay rates expected under this level of generality and our new results substantially improve several earlier related results in the literature. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 152
页数:19
相关论文
共 36 条
[1]   Decay estimates for second order evolution equations with memory [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Sforza, Daniela .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1342-1372
[2]   A general method for proving sharp energy decay rates for memory-dissipative evolution equations [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (15-16) :867-872
[3]  
[Anonymous], 2013, Mathematical methods of classical mechanics
[4]  
[Anonymous], 1993, DIFFER INTEGR EQUATI
[5]   Existence and decay of solutions of a viscoelastic equation with a nonlinear source [J].
Berrimi, S ;
Messaoudi, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (10) :2314-2331
[6]  
Cabanillas E.L., 1996, Comm. Math. Phys, V177, P583, DOI DOI 10.1007/BF02099539
[7]   Integro-differential equations of hyperbolic type with positive definite kernels [J].
Cannarsa, Piermarco ;
Sforza, Daniela .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (12) :4289-4335
[8]   Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density [J].
Cavalcanti, Marcelo M. ;
Domingos Cavalcanti, Valeria N. ;
Lasiecka, Irena ;
Webler, Claudete M. .
ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (02) :121-145
[9]   Existence and sharp decay rate estimates for a von Karman system with long memory [J].
Cavalcanti, Marcelo M. ;
Cavalcanti, Andre D. D. ;
Lasiecka, Irena ;
Wang, Xiaojun .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 :289-306
[10]   INTRINSIC DECAY RATE ESTIMATES FOR THE WAVE EQUATION WITH COMPETING VISCOELASTIC AND FRICTIONAL DISSIPATIVE EFFECTS [J].
Cavalcanti, Marcelo M. ;
Domingos Cavalcanti, Valeria N. ;
Lasiecka, Irena ;
Falcao Nascimento, Flavio A. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (07) :1987-2012