Unexpected scaling of interstitial velocities with permeability due to polymer retention in porous media

被引:5
作者
Parsa, Shima [1 ,2 ,3 ]
Zareei, Ahmad [1 ]
Santanach-Carreras, Enric [4 ,5 ]
Morris, Eliza J. [1 ,6 ]
Amir, Ariel [1 ]
Xiao, Lizhi [2 ,7 ]
Weitz, David A. [1 ,2 ,8 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard SEAS CUPB Joint Lab Petr Sci, Cambridge, MA 02138 USA
[3] Rochester Inst Technol, Sch Phys & Astron, Rochester, NY 14623 USA
[4] Total SA, Pole Etud & Rech Lacq, BP 47-64170, Lacq, France
[5] Total SA ESPCI CNRS, Lab Phys Chim Interfaces Complexes, Route Dept 817, F-64170 Lacq, France
[6] Calif State Univ Sacramento, Dept Phys & Astron, Sacramento, CA 95819 USA
[7] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
[8] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
RELATIVE PERMEABILITY; NETWORK MODEL; FLOW-THROUGH; POLYACRYLAMIDE;
D O I
10.1103/PhysRevFluids.6.L082302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Polymer retention from the flow of a polymer solution through porous media results in substantial decrease of the permeability; however, the underlying physics of this effect is unknown. While the polymer retention leads to a decrease in pore volume, here we show that this cannot cause the full reduction in permeability. Instead, to determine the origin of this anomalous decrease in permeability, we use confocal microscopy to measure the pore-level velocities in an index-matched model porous medium. We show that they exhibit an exponential distribution and, upon polymer retention, this distribution is broadened yet retains the same exponential form. Surprisingly, the velocity distributions are scaled by the inverse square root of the permeabilities. We combine experiment and simulation to show these changes result from diversion of flow in the random porous-medium network rather than reduction in pore volume upon polymer retention.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Local Pore Size Correlations Determine Flow Distributions in Porous Media [J].
Alim, Karen ;
Parsa, Shima ;
Weitz, David A. ;
Brenner, Michael P. .
PHYSICAL REVIEW LETTERS, 2017, 119 (14)
[2]   Distribution of local fluxes in diluted porous media [J].
Araujo, Ascanio D. ;
Bastos, Wagner B. ;
Andrade, Jose S., Jr. ;
Herrmann, Hans J. .
PHYSICAL REVIEW E, 2006, 74 (01)
[3]   PIV measurements of flow through a model porous medium with varying boundary conditions [J].
Arthur, James K. ;
Ruth, Douglas W. ;
Tachie, Mark F. .
JOURNAL OF FLUID MECHANICS, 2009, 629 :343-374
[4]   An experimental and numerical study of polymer action on relative permeability and capillary pressure [J].
Barreau, P ;
Lasseux, D ;
Bertin, H ;
Glénat, P ;
Zaitoun, A .
PETROLEUM GEOSCIENCE, 1999, 5 (02) :201-206
[5]  
Bear J., 1972, DYNAMICS FLUIDS PORO
[6]   Real-time 3D imaging of Haines jumps in porous media flow [J].
Berg, Steffen ;
Ott, Holger ;
Klapp, Stephan A. ;
Schwing, Alex ;
Neiteler, Rob ;
Brussee, Niels ;
Makurat, Axel ;
Leu, Leon ;
Enzmann, Frieder ;
Schwarz, Jens-Oliver ;
Kersten, Michael ;
Irvine, Sarah ;
Stampanoni, Marco .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (10) :3755-3759
[7]   Modeling non-Fickian transport in geological formations as a continuous time random walk [J].
Berkowitz, Brian ;
Cortis, Andrea ;
Dentz, Marco ;
Scher, Harvey .
REVIEWS OF GEOPHYSICS, 2006, 44 (02)
[8]   Signature of Non-Fickian Solute Transport in Complex Heterogeneous Porous Media [J].
Bijeljic, Branko ;
Mostaghimi, Peyman ;
Blunt, Martin J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (20)
[9]   Fingering versus stability in the limit of zero interfacial tension [J].
Bischofberger, Irmgard ;
Ramachandran, Radha ;
Nagel, Sidney R. .
NATURE COMMUNICATIONS, 2014, 5
[10]   Pore-scale imaging and modelling [J].
Blunt, Martin J. ;
Bijeljic, Branko ;
Dong, Hu ;
Gharbi, Oussama ;
Iglauer, Stefan ;
Mostaghimi, Peyman ;
Paluszny, Adriana ;
Pentland, Christopher .
ADVANCES IN WATER RESOURCES, 2013, 51 :197-216