Very long chain fatty acids activate NADPH oxidase in human dermal fibroblasts

被引:27
作者
Dhaunsi, GS
Kaur, J
Alsaeid, K
Turner, RB
Bitar, MS
机构
[1] Kuwait Univ, Fac Med, Dept Pediat, Kuwait 13110, Kuwait
[2] Kuwait Univ, Fac Med, Dept Pharmacol, Kuwait 13110, Kuwait
[3] Univ Virginia, Dept Pediat, Charlottesville, VA USA
关键词
VLCFAs; peroxisome; NADPH oxidase; fibroblasts; superoxide; lipid peroxidation;
D O I
10.1002/cbf.1173
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Very long chain fatty acids (VLCFAs) are exclusively oxidized in peroxisomes and their levels are significantly increased in tissues of patients with peroxisomal disorders. Although the biochemical indicators of peroxisomal dysfunction, such as elevated VLCFAs, are well known, the mechanisms of pathogenesis of peroxisomal diseases are unclear. In this study we have examined the effect of VLCFAs on NADPH oxidase (NOX), a complex enzyme system responsible for the production of superoxide anions, in order to understand the oxidative stress-mediated mechanisms involved in pathology of peroxisomal disorders. Varying concentrations (2.5 to 10 mug ml(-1)) of VLCFAs, lignoceric acid and cerotic acid, significantly (p < 0.001) increased the enzymic activity of NOX in cultures of human dermal fibroblasts. VLCFAs did not affect the expression of gp91phox or p22phox whereas the mRNA and protein levels of p47phox were significantly (two or three-fold) increased following treatment of fibroblasts with lignoceric acid or cerotic acid. VLCFAs also caused a significant (p < 0.01) increase in lipid peroxidation in dermal fibroblasts which could be markedly reversed by treatment with apocyanin (10 mm) or superoxide dismutase (SOD, 25 U ml(-1)). With these results, we report for the first time that VLCFAs enhance NOX activity and superoxide anion-mediated lipid peroxidation in cultured dermal fibroblasts. This study proposes a mechanism that may be taking place in vivo during peroxisomal dysfunction and that leads to oxidative stress-mediated pathogenesis. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:65 / 68
页数:4
相关论文
共 23 条
[1]  
Bell M., 1992, Advances in Contraceptive Delivery Systems, V8, P144
[2]   Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology [J].
Bengtsson, SH ;
Gulluyan, LM ;
Dusting, GJ ;
Drummond, GR .
CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2003, 30 (11) :849-854
[3]   Catecholamine-induced vascular wall growth is dependent on generation of reactive oxygen species [J].
Bleeke, T ;
Zhang, H ;
Madamanchi, N ;
Patterson, C ;
Faber, JE .
CIRCULATION RESEARCH, 2004, 94 (01) :37-45
[4]   NADPH oxidases: not just for leukocytes anymore! [J].
Bokoch, GM ;
Knaus, UG .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (09) :502-508
[5]  
Bromberg Y, 1986, Adv Prostaglandin Thromboxane Leukot Res, V16, P153
[6]   PEROXISOMAL DISORDERS - NEURODEVELOPMENTAL AND BIOCHEMICAL ASPECTS [J].
BROWN, FR ;
VOIGT, R ;
SINGH, AK ;
SINGH, I .
AMERICAN JOURNAL OF DISEASES OF CHILDREN, 1993, 147 (06) :617-626
[7]   Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II - Induced cardiac hypertrophy [J].
Byrne, JA ;
Grieve, DJ ;
Bendall, JK ;
Li, JM ;
Gove, C ;
Lambeth, JD ;
Cave, AC ;
Shah, AM .
CIRCULATION RESEARCH, 2003, 93 (09) :802-804
[8]   Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney [J].
Chabrashvili, T ;
Tojo, A ;
Onozato, ML ;
Kitiyakara, C ;
Quinn, MT ;
Fujita, T ;
Welch, WJ ;
Wilcox, CS .
HYPERTENSION, 2002, 39 (02) :269-274
[9]   Homologs of gp91phox:: cloning and tissue expression of Nox3, Nox4, and Nox5 [J].
Cheng, GJ ;
Cao, ZH ;
Xu, XX ;
Van Meir, EG ;
Lambeth, JD .
GENE, 2001, 269 (1-2) :131-140
[10]   Assembly of the phagocyte NADPH oxidase: Molecular interaction of oxidase proteins [J].
DeLeo, FR ;
Quinn, MT .
JOURNAL OF LEUKOCYTE BIOLOGY, 1996, 60 (06) :677-691