High-frequency self-aligned graphene transistors with transferred gate stacks

被引:300
作者
Cheng, Rui [2 ]
Bai, Jingwei [2 ]
Liao, Lei [1 ]
Zhou, Hailong [1 ]
Chen, Yu [2 ]
Liu, Lixin [1 ]
Lin, Yung-Chen [2 ]
Jiang, Shan [1 ]
Huang, Yu [2 ,3 ]
Duan, Xiangfeng [1 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
cut-off frequency; transfer gate; FIELD-EFFECT TRANSISTORS; DEPOSITION; PHASE;
D O I
10.1073/pnas.1205696109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra-high-frequency circuits.
引用
收藏
页码:11588 / 11592
页数:5
相关论文
共 32 条
[1]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[2]   Top-Gated Chemical Vapor Deposition Grown Graphene Transistors with Current Saturation [J].
Bai, Jingwei ;
Liao, Lei ;
Zhou, Hailong ;
Cheng, Rui ;
Liu, Lixin ;
Huang, Yu ;
Duan, Xiangfeng .
NANO LETTERS, 2011, 11 (06) :2555-2559
[3]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P655, DOI [10.1038/NNANO.2010.154, 10.1038/nnano.2010.154]
[4]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Assessment of high-frequency performance limits of graphene field-effect transistors [J].
Chauhan, Jyotsna ;
Guo, Jing .
NANO RESEARCH, 2011, 4 (06) :571-579
[7]   Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices [J].
Farmer, Damon B. ;
Golizadeh-Mojarad, Roksana ;
Perebeinos, Vasili ;
Lin, Yu-Ming ;
Tulevski, George S. ;
Tsang, James C. ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (01) :388-392
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Transport measurements across a tunable potential barrier in graphene [J].
Huard, B. ;
Sulpizio, J. A. ;
Stander, N. ;
Todd, K. ;
Yang, B. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[10]   Radio-Frequency Electrical Characteristics of Single Layer Graphene [J].
Jeon, Dae-Young ;
Lee, Kook Joo ;
Kim, Moonil ;
Kim, Dong Chul ;
Chung, Hyun-Jong ;
Woo, Yun-Sung ;
Seo, Sunae .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (09) :0916011-0916013