A SUPERCONVERGENT ENSEMBLE HDG METHOD FOR PARAMETERIZED CONVECTION DIFFUSION EQUATIONS

被引:8
作者
Chen, Gang [1 ,2 ]
Pi, Liangya [3 ]
Xu, Liwei [2 ]
Zhang, Yangwen [4 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Peoples R China
[3] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[4] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
中国国家自然科学基金; 美国国家科学基金会; 中国博士后科学基金;
关键词
superconvergence; hybridizable discontinuous Galerkin (HDG) method; ensemble; parameterized convection diffusion equations; error analysis; DISCONTINUOUS GALERKIN METHOD; ORTHOGONAL DECOMPOSITION METHOD; ALGORITHM; FLOW; COEFFICIENTS; SCHEME;
D O I
10.1137/18M1192573
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first devise an ensemble hybridizable discontinuous Galerkin (HDG) method to efficiently simulate a group of parameterized convection diffusion PDEs. These PDEs have different coefficients, initial conditions, source terms, and boundary conditions. The ensemble HDG discrete system shares a common coefficient matrix with multiple right-hand-side vectors; it reduces both computational cost and storage. We have two contributions in this paper. First, we derive an optimal L-2 convergence rate for the ensemble solutions on a general polygonal domain, which is the first such result in the literature. Second, we obtain a superconvergent rate for the ensemble solutions after an element-by-element postprocessing under some assumptions on the domain and the coefficients of the PDEs. We present numerical experiments to confirm our theoretical results.
引用
收藏
页码:2551 / 2578
页数:28
相关论文
共 39 条
[1]   Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems [J].
Buffa, A. ;
Hughes, T. J. R. ;
Sangalli, G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) :1420-1440
[2]   THEORY OF THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONSTATIONARY PARABOLIC PROBLEMS WITH NONLINEAR CONVECTION AND DIFFUSION [J].
Cesenek, Jan ;
Feistauer, Miloslav .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) :1181-1206
[3]   Analysis of HDG Methods for Oseen Equations [J].
Cesmelioglu, Aycil ;
Cockburn, Bernardo ;
Ngoc Cuong Nguyen ;
Peraire, Jaume .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (02) :392-431
[4]  
Chen G., J SCI COMPUT
[5]   Robust a posteriori error estimates for HDG method for convection-diffusion equations [J].
Chen, Huangxin ;
Li, Jingzhi ;
Qiu, Weifeng .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (01) :437-462
[6]  
Chen YL, 2014, MATH COMPUT, V83, P87
[7]   Analysis of variable-degree HDG methods for convection-diffusion equations. Part I: general nonconforming meshes [J].
Chen, Yanlai ;
Cockburn, Bernardo .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) :1267-1293
[8]  
Cockburn B, 2016, HANDB NUM ANAL, V17, P173, DOI 10.1016/bs.hna.2016.07.001
[9]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[10]   Interpolatory HDG Method for Parabolic Semilinear PDEs [J].
Cockburn, Bernardo ;
Singler, John R. ;
Zhang, Yangwen .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (03) :1777-1800