Wearable technologies to measure clinical outcomes in multiple sclerosis: A scoping review

被引:35
作者
Alexander, Sarah [1 ,2 ]
Peryer, Guy [3 ]
Gray, Emma
Barkhof, Frederik [1 ,2 ,4 ,5 ,6 ]
Chataway, Jeremy [1 ,2 ,5 ,7 ]
机构
[1] UCL, Queen Sq MS Ctr, London, England
[2] UCL, Dept Neuroinflammat, UCL Queen Sq Inst Neurol, Fac Brain Sci, London, England
[3] Univ East Anglia, Sch Hlth Sci, Norwich, Norfolk, England
[4] UCL, Ctr Med Image Comp CMIC, Dept Med Phys & Biomed Engn, London, England
[5] Univ Coll London Hosp UCLH, Natl Inst Hlth Res NIHR, Biomed Res Ctr, London, England
[6] Vrije Univ Amsterdam Med Ctr, Dept Radiol & Nucl Med, Amsterdam, Netherlands
[7] UCL, MRC CTU UCL, Inst Clin Trials & Methodol, London, England
关键词
Multiple sclerosis; wearable technology; mHealth; biosensors; remote sensing technology; mobile applications; PHYSICAL-ACTIVITY; ACTIVITY MONITOR; STEP COUNT; PATIENT; DISABILITY; FATIGUE; PEOPLE; INDIVIDUALS; SMARTPHONE; VALIDITY;
D O I
10.1177/1352458520946005
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Wearable technology refers to any sensor worn on the person, making continuous and remote monitoring available to many people with chronic disease, including multiple sclerosis (MS). Daily monitoring seems an ideal solution either as an outcome measure or as an adjunct to support rater-based monitoring in both clinical and research settings. There has been an increase in solutions that are available, yet there is little consensus on the most appropriate solution to use in either MS research or clinical practice. We completed a scoping review (using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines) to summarise the wearable solutions available in MS, to identify those approaches that could potentially be utilised in clinical trials, by evaluating the following: scalability, cost, patient adaptability and accuracy. We identified 35 unique products that measure gait, cognition, upper limb function, activity, mood and fatigue, with most of these solutions being phone applications.
引用
收藏
页码:1643 / 1656
页数:14
相关论文
共 56 条
[1]  
[Anonymous], 2015, J MED INTERNET RES, DOI DOI 10.1186/S12913-015-0928-7
[2]   Public Attitudes Toward Guided Internet-Based Therapies: Web-Based Survey Study [J].
Apolinario-Hagen, Jennifer ;
Harrer, Mathias ;
Kaehlke, Fanny ;
Fritsche, Lara ;
Salewski, Christel ;
Ebert, David Daniel .
JMIR MENTAL HEALTH, 2018, 5 (02)
[3]   Group-based, individualized, comprehensive core stability and balance intervention provides immediate and long-term improvements in walking in individuals with multiple sclerosis: A randomized controlled trial [J].
Arntzen, Ellen Christin ;
Straume, Bjorn ;
Odeh, Francis ;
Feys, Peter ;
Normann, Britt .
PHYSIOTHERAPY RESEARCH INTERNATIONAL, 2020, 25 (01)
[4]  
Balto Julia M, 2016, Mult Scler J Exp Transl Clin, V2, p2055217316634754, DOI 10.1177/2055217316634754
[5]   Continuous daily assessment of multiple sclerosis disability using remote step count monitoring [J].
Block, V. J. ;
Lizee, A. ;
Crabtree-Hartman, E. ;
Bevan, C. J. ;
Graves, J. S. ;
Bove, R. ;
Green, A. J. ;
Nourbakhsh, B. ;
Tremblay, M. ;
Gourraud, P. -A. ;
Ng, M. Y. ;
Pletcher, M. J. ;
Olgin, J. E. ;
Marcus, G. M. ;
Allen, D. D. ;
Cree, B. A. C. ;
Gelfand, J. M. .
JOURNAL OF NEUROLOGY, 2017, 264 (02) :316-326
[6]   Association of Continuous Assessment of Step Count by Remote Monitoring With Disability Progression Among Adults With Multiple Sclerosis [J].
Block, Valerie J. ;
Bove, Riley ;
Zhao, Chao ;
Garcha, Priya ;
Graves, Jennifer ;
Romeo, Andrew R. ;
Green, Ari J. ;
Allen, Diane D. ;
Hollenbach, Jill A. ;
Olgin, Jeffrey E. ;
Marcus, Gregory M. ;
Pletcher, Mark J. ;
Cree, Bruce A. C. ;
Gelfand, Jeffrey M. .
JAMA NETWORK OPEN, 2019, 2 (03) :e190570
[7]   Smartphone Level Test Measures Disability in Several Neurological Domains for Patients With Multiple Sclerosis [J].
Boukhvalova, Alexandra K. ;
Fan, Olivia ;
Weideman, Ann Marie ;
Harris, Thomas ;
Kowalczyk, Emily ;
Linh Pham ;
Kosa, Peter ;
Bielekova, Bibiana .
FRONTIERS IN NEUROLOGY, 2019, 10
[8]   Identifying and Quantifying Neurological Disability via Smartphone [J].
Boukhvalova, Alexandra K. ;
Kowalczyk, Emily ;
Harris, Thomas ;
Kosa, Peter ;
Wichman, Alison ;
Sandford, Mary A. ;
Memon, Atif ;
Bielekova, Bibiana .
FRONTIERS IN NEUROLOGY, 2018, 9
[9]   Evaluating more naturalistic outcome measures A 1-year smartphone study in multiple sclerosis [J].
Bove, Riley ;
White, Charles C. ;
Giovannoni, Gavin ;
Glanz, Bonnie ;
Golubchikov, Victor ;
Hujol, Johnny ;
Jennings, Charles ;
Langdon, Dawn ;
Lee, Michelle ;
Legedza, Anna ;
Paskavitz, James ;
Prasad, Sashank ;
Richert, John ;
Robbins, Allison ;
Roberts, Susan ;
Weiner, Howard ;
Ramachandran, Ravi ;
Botfield, Martyn ;
De Jager, Philip L. .
NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION, 2015, 2 (06)
[10]   Gyroscopic corrections improve wearable sensor data prior to measuring dynamic sway in the gait of people with Multiple Sclerosis [J].
Brodie, Matthew A. D. ;
Psarakis, Michael ;
Phu Hoang .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2016, 19 (12) :1339-1346