Algorithm to Compute Nonlinear Partial Observer Normal Form With Multiple Outputs

被引:2
作者
Saadi, Wided [3 ]
Boutat, Driss [4 ]
Zheng, Gang [1 ,2 ]
Sbita, Lassaad [3 ]
Yu, Lei [5 ]
机构
[1] Foshan Univ, Sch Math & Big Data, Foshan 528000, Peoples R China
[2] Inria Lille, F-59650 Villeneuve Dascq, France
[3] ENIG, Zrig Eddakhlania 6029, Tunisia
[4] Univ Orleans, INSA Ctr Val Loire, PRISME EA 4229, F-18022 Bourges, France
[5] Wuhan Univ, Wuhan 430072, Peoples R China
关键词
Observers; Nonlinear dynamical systems; Observability; Mathematical model; Transforms; Differential geometric method; observer design; partially observable; LINEAR ERROR DYNAMICS; DESIGN; SYSTEMS; LINEARIZATION;
D O I
10.1109/TAC.2019.2946528
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is well known that observer design is a powerful tool to estimate the states of a dynamical system. Given a multioutput nonlinear dynamical system whose states are partially observable, this article investigates the problem of observer design to estimate those observable states. First, it considers a nonlinear system without inputs, and then provides a set of geometric conditions, guaranteeing the existence of a change of coordinates, which splits the studied nonlinear dynamical system into two subsystems, where one of them is of the well-known nonlinear observer normal form, for which a Luenberger-like observer can be designed. An extension to nonlinear systems with inputs has then been deduced.
引用
收藏
页码:2700 / 2707
页数:8
相关论文
共 35 条
[1]  
[Anonymous], 1990, Nonlinear Dynamical Control Systems, DOI 10.1007/978-1-4757-2101-0_13
[2]  
[Anonymous], 1978, FDN MECH
[3]  
[Anonymous], 1996, ROBUST OPTIMAL CONTR
[4]   Dynamic observer error linearization [J].
Back, Juhoon ;
Yu, Kyung T. ;
Seo, Jin H. .
AUTOMATICA, 2006, 42 (12) :2195-2200
[5]   CANONICAL FORM OBSERVER DESIGN FOR NON-LINEAR TIME-VARIABLE SYSTEMS [J].
BESTLE, D ;
ZEITZ, M .
INTERNATIONAL JOURNAL OF CONTROL, 1983, 38 (02) :419-431
[6]   Extended nonlinear observer normal forms for a class of nonlinear dynamical systems [J].
Boutat, D. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2015, 25 (03) :461-474
[7]   New algorithm for observer error linearization with a diffeomorphism on the outputs [J].
Boutat, D. ;
Benali, A. ;
Hammouri, H. ;
Busawon, K. .
AUTOMATICA, 2009, 45 (10) :2187-2193
[8]   Reduced-order observer design for descriptor systems with unknown inputs [J].
Darouach, M ;
Zasadzinski, M ;
Hayar, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (07) :1068-1072
[9]   New algebro-geometric conditions for the linearization by input-output injection [J].
Glumineau, A ;
Moog, CH ;
Plestan, F .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (04) :598-603
[10]   Observer linearization by output-dependent time-scale transformations [J].
Guay, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (10) :1730-1735