Regression and ANN models for estimating minimum value of machining performance
被引:55
作者:
Zain, Azlan Mohd
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Soft Comp Res Group, Fac Comp Sci & Informat Syst, Utm Skudai 81310, Johor, MalaysiaUniv Teknol Malaysia, Soft Comp Res Group, Fac Comp Sci & Informat Syst, Utm Skudai 81310, Johor, Malaysia
Zain, Azlan Mohd
[1
]
Haron, Habibollah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Soft Comp Res Group, Fac Comp Sci & Informat Syst, Utm Skudai 81310, Johor, MalaysiaUniv Teknol Malaysia, Soft Comp Res Group, Fac Comp Sci & Informat Syst, Utm Skudai 81310, Johor, Malaysia
Haron, Habibollah
[1
]
Qasem, Sultan Noman
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Soft Comp Res Group, Fac Comp Sci & Informat Syst, Utm Skudai 81310, Johor, MalaysiaUniv Teknol Malaysia, Soft Comp Res Group, Fac Comp Sci & Informat Syst, Utm Skudai 81310, Johor, Malaysia
Qasem, Sultan Noman
[1
]
Sharif, Safian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Dept Mfg & Ind Engn, Fac Mech Engn, Utm Skudai 81310, Johor, MalaysiaUniv Teknol Malaysia, Soft Comp Res Group, Fac Comp Sci & Informat Syst, Utm Skudai 81310, Johor, Malaysia
Sharif, Safian
[2
]
机构:
[1] Univ Teknol Malaysia, Soft Comp Res Group, Fac Comp Sci & Informat Syst, Utm Skudai 81310, Johor, Malaysia
[2] Univ Teknol Malaysia, Dept Mfg & Ind Engn, Fac Mech Engn, Utm Skudai 81310, Johor, Malaysia
Surface roughness is one of the most common performance measurements in machining process and an effective parameter in representing the quality of machined surface. The minimization of the machining performance measurement such as surface roughness (R-a) must be formulated in the standard mathematical model. To predict the minimum R-a value, the process of modeling is taken in this study. The developed model deals with real experimental data of the R-a in the end milling machining process. Two modeling approaches, regression and Artificial Neural Network (ANN), are applied to predict the minimum R-a value. The results show that regression and ANN models have reduced the minimum R-a value of real experimental data by about 1.57% and 1.05%, respectively. (C) 2011 Elsevier Inc. All rights reserved.
机构:
Spanish Natl Res Council, Inst Automat Ind, Madrid 28500, SpainSpanish Natl Res Council, Inst Automat Ind, Madrid 28500, Spain
Correa, M.
;
Bielza, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Madrid, Dept Inteligencia Artificial, E-28660 Madrid, SpainSpanish Natl Res Council, Inst Automat Ind, Madrid 28500, Spain
Bielza, C.
;
Pamies-Teixeira, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, P-2829516 Quinta Da Torre, Caparica, PortugalSpanish Natl Res Council, Inst Automat Ind, Madrid 28500, Spain
机构:
Indian Inst Technol, Dept Ind Engn & Management, Kharagpur 721302, W Bengal, IndiaIndian Inst Technol, Dept Ind Engn & Management, Kharagpur 721302, W Bengal, India
Mukherjee, Indrajit
;
Ray, Pradip Kumar
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Dept Ind Engn & Management, Kharagpur 721302, W Bengal, IndiaIndian Inst Technol, Dept Ind Engn & Management, Kharagpur 721302, W Bengal, India
机构:
Spanish Natl Res Council, Inst Automat Ind, Madrid 28500, SpainSpanish Natl Res Council, Inst Automat Ind, Madrid 28500, Spain
Correa, M.
;
Bielza, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Madrid, Dept Inteligencia Artificial, E-28660 Madrid, SpainSpanish Natl Res Council, Inst Automat Ind, Madrid 28500, Spain
Bielza, C.
;
Pamies-Teixeira, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, P-2829516 Quinta Da Torre, Caparica, PortugalSpanish Natl Res Council, Inst Automat Ind, Madrid 28500, Spain
机构:
Indian Inst Technol, Dept Ind Engn & Management, Kharagpur 721302, W Bengal, IndiaIndian Inst Technol, Dept Ind Engn & Management, Kharagpur 721302, W Bengal, India
Mukherjee, Indrajit
;
Ray, Pradip Kumar
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Dept Ind Engn & Management, Kharagpur 721302, W Bengal, IndiaIndian Inst Technol, Dept Ind Engn & Management, Kharagpur 721302, W Bengal, India