Recombination and chromosome segregation

被引:63
作者
Sherratt, DJ [1 ]
Soballe, B [1 ]
Barre, FX [1 ]
Filipe, S [1 ]
Lau, I [1 ]
Massey, T [1 ]
Yates, J [1 ]
机构
[1] Univ Oxford, Dept Biochem, Div Mol Genet, Oxford OX1 3QU, England
关键词
Escherichia coli; replication; recombination; chromosome segregation;
D O I
10.1098/rstb.2003.1365
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The duplication of DNA and faithful segregation of newly replicated chromosomes at cell division is frequently dependent on recombinational processes. The rebuilding of broken or stalled replication forks is universally dependent on homologous recombination proteins. In bacteria with circular chromosomes, crossing over by homologous recombination can generate dimeric chromosomes, which cannot be segregated to daughter cells unless they are converted to monomers before cell division by the conserved Xer site-specific recombination system. Dimer resolution also requires FtsK, a division septum-located protein, which coordinates chromosome segregation with cell division, and uses the energy of ATP hydrolysis to activate the dimer resolution reaction. FtsK can also translocate DNA, facilitate synapsis of sister chromosomes and minimize entanglement and catenation of newly replicated sister chromosomes. The visualization of the replication/recombination-associated proteins, RecQ and RarA, and specific genes within living Escherichia coli cells, reveals further aspects of the processes that link replication with recombination, chromosome segregation and cell division, and provides new insight into how these may be coordinated.
引用
收藏
页码:61 / 69
页数:9
相关论文
共 67 条
[1]   FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases [J].
Aussel, L ;
Barre, FX ;
Aroyo, M ;
Stasiak, A ;
Stasiak, AZ ;
Sherratt, D .
CELL, 2002, 108 (02) :195-205
[2]   FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation [J].
Barre, FX ;
Aroyo, M ;
Colloms, SD ;
Helfrich, A ;
Cornet, F ;
Sherratt, DJ .
GENES & DEVELOPMENT, 2000, 14 (23) :2976-2988
[3]   Circles: The replication-recombination-chromosome segregation connection [J].
Barre, FX ;
Soballe, B ;
Michel, B ;
Aroyo, M ;
Robertson, M ;
Sherratt, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (15) :8189-8195
[4]   Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum [J].
Bath, J ;
Wu, LJ ;
Errington, J ;
Wang, JC .
SCIENCE, 2000, 290 (5493) :995-997
[5]   2 RELATED RECOMBINASES ARE REQUIRED FOR SITE-SPECIFIC RECOMBINATION AT DIF AND CER IN ESCHERICHIA-COLI K12 [J].
BLAKELY, G ;
MAY, G ;
MCCULLOCH, R ;
ARCISZEWSKA, LK ;
BURKE, M ;
LOVETT, ST ;
SHERRATT, DJ .
CELL, 1993, 75 (02) :351-361
[6]   A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation [J].
Brendler, T ;
Sawitzke, J ;
Sergueev, K ;
Austin, S .
EMBO JOURNAL, 2000, 19 (22) :6249-6258
[7]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[8]   DNA topoisomerases: Structure, function, and mechanism [J].
Champoux, JJ .
ANNUAL REVIEW OF BIOCHEMISTRY, 2001, 70 :369-413
[9]   DNA damage-induced replication fork regression and processing in Escherichia coli [J].
Courcelle, J ;
Donaldson, JR ;
Chow, KH ;
Courcelle, CT .
SCIENCE, 2003, 299 (5609) :1064-1067
[10]   RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli [J].
Courcelle, J ;
Hanawalt, PC .
MOLECULAR AND GENERAL GENETICS, 1999, 262 (03) :543-551