The Erdos-Sos Conjecture for trees of diameter four

被引:34
作者
McLennan, A [1 ]
机构
[1] Univ Minnesota, Dept Econ, Minneapolis, MN 55455 USA
关键词
Erdos-Sos Conjecture; extremal graph theory;
D O I
10.1002/jgt.20083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Erdos-Sos Conjecture is that a finite graph G with average degree greater than k - 2 contains every tree with k vertices. Theorem 1 is a special case: every k-vertex tree of diameter four can be embedded in G. A more technical result, Theorem 2, is obtained by extending the main ideas in the proof of Theorem 1. (C) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:291 / 301
页数:11
相关论文
共 11 条
[1]  
[Anonymous], NEW TRENDS DISCRETE
[2]   The Erdos-Sos conjecture for graphs of girth 5 [J].
Brandt, S ;
Dobson, E .
DISCRETE MATHEMATICS, 1996, 150 (1-3) :411-414
[3]  
Burr S.A., 1976, Utilitas Mathematica, V9, P247
[4]  
Chung F., 1999, ERDOS GRAPHS HIS LEG
[5]  
Erd P., 1965, Theory of Graphs and Appl, P29
[6]  
Erdos P., 1959, Acta Math. Acad. Sci. Hungar., V10, P337, DOI DOI 10.1007/BF02024498
[7]   The Erdos-Sos conjecture for graphs without C-4 [J].
Sacle, JF ;
Wozniak, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 70 (02) :367-372
[8]   ASYMPTOTIC SOLUTION FOR A NEW CLASS OF FORBIDDEN R-GRAPHS [J].
SIDORENKO, AF .
COMBINATORICA, 1989, 9 (02) :207-215
[9]  
Wang M., 2000, ARS COMBINATORIA, V55, P123
[10]  
Wozniak M, 1996, J GRAPH THEOR, V21, P229