The action of √-Δ on weighted Sobolev spaces

被引:6
作者
Umeda, T [1 ]
机构
[1] Himeji Inst Technol, Dept Math, Himeji, Hyogo 67122, Japan
基金
日本学术振兴会;
关键词
relativistic Hamiltonians; relativistic Schrodinger operators; weighted Sobolev spaces;
D O I
10.1023/A:1010918505818
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The action of root-Delta on distributions is examined within the context of weighted Sobolev spaces. The results obtained are as follows: (1) root-Delta is a continuous map of S(R-n), the space of rapidly decreasing functions, to L-2, s(R-n) for any s < n/2 + 1; (2) if k is an element of R and s > -n/2 - 1, then root-Delta is a continuous map from H-k,H- s(R-n), the weighted Sobolev space, to Hk-1, (t)(R-n) for some t. The results are optimal in a sense.
引用
收藏
页码:301 / 313
页数:13
相关论文
共 10 条
[1]  
[Anonymous], PSEUDODIFFERENTIAL O
[2]   THE STABILITY OF MATTER - FROM ATOMS TO STARS [J].
LIEB, EH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 22 (01) :1-49
[3]  
LIEB EH, 1997, GRADUATE STUD MATH, V14
[4]  
NAGASE M, 1990, J FUNCT ANAL, V92, P277
[5]  
STEIN E. M., 1970, PRINCETON MATH SER, V30
[6]   CHARACTERIZATION OF FUNCTIONS ARISING AS POTENTIALS [J].
STEIN, EM .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (01) :102-&
[7]  
STRICHARTZ R, 1994, STUD ADV MATH
[8]  
Treves Francois., 1967, Pure and Applied Mathematics
[9]  
UMEDA T, 1995, ANN I H POINCARE-PHY, V63, P277
[10]  
WEDER RA, 1974, ANN I H POINCARE A, V20, P211