Interactive target recognition in images using machine-learning techniques

被引:1
作者
Michaeli, Ariel
Camon, Irit
机构
来源
SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XX | 2011年 / 8050卷
关键词
ATR; Interactive Target Recognition; Machine Learning; User interface; Sensor fusion;
D O I
10.1117/12.884972
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Imagery analysis systems utilize Automatic Target Recognition (ATR) methods in order to improve the accuracy of human-based analysis and save time. Often, ATR methods perform poorly in obtaining these objectives, due to reliance on outdated prior information, while human operators possess updated information that remains unused. This paper presents an interactive target recognition (or ITR) application. The operator marks sample target pixels by an intuitive user-interface. Then machine-learning techniques generate algorithms tailored for their recognition in imagery. The resulting detection map is dynamically controlled by the operator, suiting his needs. The application enables target recognition in zero prior information environments.
引用
收藏
页数:6
相关论文
共 2 条
[1]   Target Detection and Verification via Airborne Hyperspectral and High-Resolution Imagery Processing and Fusion [J].
Bar, Doron E. ;
Wolowelsky, Karni ;
Swirski, Yoram ;
Figov, Zvi ;
Michaeli, Ariel ;
Vaynzof, Yana ;
Abramovitz, Yoram ;
Ben-Dov, Amnon ;
Yaron, Ofer ;
Weizman, Lior ;
Adar, Renen .
IEEE SENSORS JOURNAL, 2010, 10 (03) :707-711
[2]  
BAUER A, 2009, P SOC PHOTO-OPT INS, V7481