Imagery analysis systems utilize Automatic Target Recognition (ATR) methods in order to improve the accuracy of human-based analysis and save time. Often, ATR methods perform poorly in obtaining these objectives, due to reliance on outdated prior information, while human operators possess updated information that remains unused. This paper presents an interactive target recognition (or ITR) application. The operator marks sample target pixels by an intuitive user-interface. Then machine-learning techniques generate algorithms tailored for their recognition in imagery. The resulting detection map is dynamically controlled by the operator, suiting his needs. The application enables target recognition in zero prior information environments.